Spelling suggestions: "subject:"filerecovery"" "subject:"biorecovery""
41 |
Engineering stoppers and skins on natural clay nanotubes for controlled surfactant deliveryJanuary 2021 (has links)
archives@tulane.edu / 1 / Olakunle Francis Ojo
|
42 |
Reservoir simulation studies for coupled CO₂ sequestration and enhanced oil recoveryGhomian, Yousef, 1974- 29 August 2008 (has links)
Compositional reservoir simulation studies were performed to investigate the effect of uncertain reservoir parameters, flood design variables, and economic factors on coupled CO₂ sequestration and EOR projects. Typical sandstone and carbonate reservoir properties were used to build generic reservoir models. A large number of simulations were needed to quantify the impact of all these factors and their corresponding uncertainties taking into account various combinations of the factors. The design of experiment method along with response surface methodology and Monte-Carlo simulations were utilized to maximize the information gained from each uncertainty analysis. The two objective functions were project profit in the form of $/bbl of oil produced and sequestered amount of CO₂ in the reservoir. The optimized values for all objective functions predicted by design of experiment and the response surface method were found to be close to the values obtained by the simulation study, but with only a small fraction of the computational time. After the statistical analysis of the simulation results, the most to least influential factors for maximizing both profit and amount of stored CO₂ are the produced gas oil ratio constraint, production and injection well types, and well spacing. For WAG injection scenarios, the Dykstra-Parsons coefficient and combinations of WAG ratio and slug size are important parameters. Also for a CO₂ flood, no significant reduction of profit occurred when only the storage of CO₂ was maximized. In terms of the economic parameters, it was demonstrated that the oil price dominates the CO₂ EOR and storage. This study showed that sandstone reservoirs have higher probability of need for CO₂i ncentives. In addition, higher CO₂ credit is needed for WAG injection scenarios than continuous CO₂ injection. As the second part of this study, scaling groups for miscible CO₂ flooding in a three-dimensional oil reservoir were derived using inspectional analysis with special emphasis on the equations related to phase behavior. Some of these scaling groups were used to develop a new MMP correlation. This correlation was compared with published correlations using a wide range of reservoir fluids and found to give more accurate predictions of the MMP. / text
|
43 |
Surfactant-enhanced spontaneous imbibition process in highly fractured carbonate reservoirsChen, Peila 17 June 2011 (has links)
Highly fractured carbonate reservoirs are a class of reservoirs characterized by high conductivity fractures surrounding low permeability matrix blocks. In these reservoirs, wettability alteration is a key method for recovering oil. Water imbibes into the matrix blocks upon water flooding if the reservoir rock is water-wet. However, many carbonate reservoirs are oil-wet. Surfactant solution was used to enhance spontaneous imbibition between the fractures and the matrix by both wettability alteration and ultra-low interfacial tensions. The first part of this study was devoted to determining the wettability of reservoir rocks using Amott-Harvey Index method, and also evaluating the performance of surfactants on wettability alteration, based on the contact angle measurement and spontaneous imbibition rate and ultimate oil recovery on oil-wet reservoir cores. The reservoir rocks have been found to be slightly oil-wet. One cationic surfactant BTC8358, one anionic surfactant and one ultra-low IFT surfactant formulation AKL-207 are all found to alter the wettability towards more water-wet and promote oil recovery through spontaneous imbibition.
The second part of the study focused on the parameters that affect wettability alteration by surfactants. Some factors such as core dimension, permeability and heterogeneity of porous medium are evaluated in the spontaneous imbibition tests. Higher permeability leads to higher imbibition rate and higher ultimate oil recovery. Heterogeneity of core samples slows down the imbibition process if other properties are similar. Core dimension is critical in upscaling from laboratory conditions to field matrix blocks. The imbibition rate is slower in larger dimension of core. Further, we investigated the effects of EDTA in surfactant-mediated spontaneous imbibition. Since high concentration of cationic divalent ions in the aqueous solution markedly suppresses the surfactant-mediated wettability alteration, EDTA improved the performance of surfactant in the spontaneous imbibition tests. It is proposed in the thesis that surfactant/EDTA-enhanced imbibition may involve the dissolution mechanism. More experiments should be conducted to verify this mechanism. The benefits of using EDTA in the surfactant solution include but not limited to: altering the surface charge of carbonate to negative, producing the in-situ soap, reducing the brine hardness, decreasing the surfactant adsorption, and creating the water-wet area by dissolving the dolomite mineral. / text
|
44 |
Wettability alteration in high temperature and high salinity carbonate reservoirsSharma, Gaurav, M.S. in Engineering 02 November 2011 (has links)
The goal of this work is to change the wettability of a carbonate rock from oil wet-mixed-wet towards water-wet at high temperature and high salinity. Only simple surfactant systems (single surfactant, dual surfactants) in dilute concentration were tried for this purpose. It was thought that the change in wettability would help to recover more oil during secondary surfactant flood as compared to regular waterflood. Three types of surfactants, anionic, non-ionic and cationic surfactants in dilute concentrations (<0.2 wt%) were used. Initial surfactant screening was done on the basis of aqueous stability at these harsh conditions. Contact angle experiments on aged calcite plates were done to narrow down the list of surfactants and spontaneous imbibition experiments were conducted on field cores for promising surfactants. Secondary waterflooding was conducted in cores with and without the wettability altering surfactants.
It was observed that barring a few surfactants, most were aqueous unstable by themselves at these harsh conditions. Dual surfactant systems, a mixture of a non-ionic and a cationic surfactant increased the aqueous stability of the non-ionic surfactants. One of the dual surfactant system, a mixture of Tergitol NP-10 and Dodecyl trimethyl ammonium bromide, proved very effective for wettability alteration and could recover 70-80% of OOIP during spontaneous imbibition. Secondary waterflooding with the wettability altering surfactant (without alkali or polymer) increased the oil recovery over the waterflooding without the surfactants (from 29% to 40% OOIP). Surfactant adsorption calculated during the coreflood showed an adsorption of 0.24 mg NP-10/gm of rock and 0.20 mg DTAB/gm of rock. A waterflood done after the surfactant flood revealed change in the relative permeability before and after the surfactant flood suggesting change in wettability towards water-wet. / text
|
45 |
Microbial enhanced oil recovery : a pore-scale investigation of interfacial interactionsArmstrong, Ryan T. 06 January 2012 (has links)
Current oil production technologies recover only about one‐third to one‐half of the oil
originally present in an oil reservoir. Given current oil prices, even a modest increase in oil recovery efficiency is fiscally attractive. One novel approach to increase oil recovery
efficiency is a process called microbial enhanced oil recovery (MEOR), where microorganisms
are either used as a clogging agent to redirect flow or to produce biosurfactant that reduces
interfacial tension. This dissertation aims to understand the MEOR pore‐scale mechanisms
relevant to oil recovery by taking a two‐fold approach where transparent 2‐dimensional
micromodel experiments imaged with stereo microscopy and 3‐dimensional column
experiments imaged with x‐ray computed microtomography (CMT) are utilized. Micromodel
experiments allow for direct visualization of the biological phase (i.e. biofilm), however, only 2‐dimensional information is provided. Conversely, CMT experiments provide 3‐dimensional
pore‐scale information, but lack the ability to image the biological phase. With this two‐fold
approach, it is possible to distinguish multiple fluid interfaces, quantify fluid phase
saturations, measure oil blob size distributions, and visualize the biological phase.
Furthermore, a method to measure interfacial curvature from 3‐dimensional images is
developed, providing researchers a new perspective from which to study multiphase flow
experiments. Overall, the presented research utilizes pore‐scale imaging techniques to study
the interfacial interactions occurring during MEOR in an effort to better explain the physics,
and thus, increase the efficacy of MEOR. / Graduation date: 2012
|
46 |
Reservoir simulation study for the South Slattery FieldWang, Linna. January 2007 (has links)
Thesis (M.S.)--University of Wyoming, 2007. / Title from PDF title page (viewed on July 26, 2010). Includes bibliographical references (p. 93-96).
|
47 |
Methods of Cultivation of Hyperthermophiles that Utilize Crude OilPropst, Erin Althaia 06 August 2005 (has links) (PDF)
This study demonstrated the presence of hyperthermophilic organisms in the upper Jurassic Smackover formation in Womack Hills, AL. Evidence for the presence of these organisms was shown by the cultivation of an aerobic and an anaerobic, oil-degrading hyperthermophilic culture from the cuttings of an oil well in the Jurassic Smackover at 90¢ªC. Viability of microorganisms in the formation was established through electron microscopy, by carbon dioxide production, and by protein production during incubation in medium at 90¢ªC. Not only was the presence of viable microorganisms in the reservoir established, but as a result of this study, new cultivation methods were also developed that may prove useful in future studies of these types of organisms.
|
48 |
Foam assisted low interfacial tension enhanced oil recoverySrivastava, Mayank 21 October 2010 (has links)
Alkali-Surfactant-Polymer (ASP) or Surfactant-Polymer (SP) flooding are attractive chemical enhanced oil recovery (EOR) methods. However, some reservoir conditions are not favorable for the use of polymers or their use would not be economically attractive due to low permeability, high salinity, or some other unfavorable factors. In such conditions, gas can be an alternative to polymer for improving displacement efficiency in chemical-EOR processes. The co-injection or alternate injection of gas and chemical slug results in the formation of foam. Foam reduces the relative permeability of injected chemical solutions that form microemulsion at ultra-low interfacial tension (IFT) conditions and generates sufficient viscous pressure gradient to drive the foamed chemical slug. We have named this technique of foam assisted enhanced oil recovery as Alkali/Surfactant/Gas (ASG) process. The concept of ASG flooding as an enhanced oil recovery technique is relatively new, with very little experimental and theoretical work available on the subject. This dissertation presents a systematic study of ASG process and its potential as an EOR method. We performed a series of high performance surfactant-gas tertiary recovery corefloods on different core samples, under different rock, fluid, and process conditions. In each coreflood, foamed chemical slug was chased by foamed chemical drive. The level of mobility control in corefloods was evaluated on the basis of pressure, oil recovery, and effluent data. Several promising surfactants, with dual properties of foaming and emulsification, were identified and used in the coreflood experiments. We observed a strong synergic effect of foam and ultra-low IFT conditions on oil recovery in ASG corefloods. Oil recoveries in ASG corefloods compared reasonably well with oil recoveries in ASP corefloods, when both were conducted under similar conditions. We found that the negative salinity gradient concept, generally applied to chemical floods, compliments ASG process by increasing foam strength in displacing fluids (slug and drive). A characteristic increase in foam strength was observed, in nearly all ASG corefloods conducted in this study, as the salinity first changed from Type II(+) to Type III environment and then from Type III to Type II(-) environment. We performed foaming and gas-microemulsion flow experiments to study foam stability in different microemulsion environments encountered in chemical flooding. Results showed that foam in oil/water microemulsion (Type II(-)) is the most stable, followed by foam in Type III microemulsion. Foam stability is extremely poor (or non-existent) in water/oil microemulsion (Type II (+)). We investigated the effects of permeability, gas and liquid injection rates (injection foam quality), chemical slug size, and surfactant type on ASG process. The level of mobility control in ASG process increased with the increase in permeability; high permeability ASG corefloods resulting in higher oil recovery due to stronger foam propagation than low permeability corefloods. The displacement efficiency was found to decrease with the increase in injection foam quality. We studied the effect of pressure on ASG process by conducting corefloods at an elevated pressure of 400 psi. Pressure affects ASG process by influencing factors that control foam stability, surfactant phase behavior, and rock-fluid interactions. High solubility of carbon dioxide (CO₂) in the aqueous phase and accompanying alkali consumption by carbonic acid, which is formed when dissolved CO₂ reacts with water, reduces the displacement efficiency of the process. Due to their low solubility and less reactivity in aqueous phase, Nitrogen (N₂) forms stronger foam than CO₂. Finally, we implemented a simple model for foam flow in low-IFT microemulsion environment. The model takes into account the effect of solubilized oil on gas mobility in the presence of foam in low-IFT microemulsion environment. / text
|
49 |
Nanoparticle-stabilized supercritical CO₂ foam for mobility control in CO₂ enhanced oil recoveryAroonsri, Archawin 10 October 2014 (has links)
Foam has been used as a mobility control technique in CO₂ flooding to improve volumetric sweep efficiency. Stabilizing CO₂ foam with nanoparticle instead of surfactant has some notable advantages. Nanoparticle-stabilized foam is very stable because a large adsorption energy is required to bring nanoparticles to the bubble interfaces. As a solid, nanoparticle can potentially withstand the high temperature in the reservoir, providing a robust foam stability for an extended period of time. The ability of nanoparticles to generate foam only above a threshold shear rate is promising as foam can be engineered to form only in the high permeability zone. These nanoparticles are hundreds of times smaller than pore throats and thus can travel in the reservoir without plugging the pore throats. Surface-modified silica nanoparticle was found to stabilize CO₂ -in-water foam at temperature up to 80 ˚C and salinity as high as 7.2 wt%. The foam was generated through the co-injection of aqueous nanoparticle dispersion and CO₂ into consolidated rock cores, primarily sandstones, with and without an induced fracture in the core. A critical shear rate for foam generation was found to exist in both matrix and fracture, however, this critical rate varied with the experiment conditions. The effects of experimental parameters on the critical shear rate and foam apparent viscosity were also investigated. Additionally, the flow distribution calculation in fractured sandstone cores revealed a diversion of flow from fracture toward matrix once foam was generated, suggesting conformance control potential in fractured reservoirs. In order to study foam rheology, high-permeability beadpack was installed upstream of the core to serve as a foam generator. This allows the foam mobility to be measured solely while being transported through the core, without the complicating effect of transient foam generation in the core. The injection of the pre-generated foam into the core at residual oil condition was found to reduce the residual oil saturation to the same level as CO₂ flood, however, with the advantage of mobility control. The 'coalescence-regeneration' mechanism of foam transport in porous media possibly allowed the foam's CO₂ to contact and mobilize the residual oil. The injection of the foam slug followed by a slug of only CO₂ was also tested, showing similar viscosification as the continuous foam injection, however, required less nanoparticles. / text
|
50 |
Experimental studies on pore wetting and displacement of fluid by CO2 in porous mediaLi, Xingxun January 2015 (has links)
The study of multiphase flow in porous media is highly relevant to many problems of great scientific importance, such as CO2 storage and enhanced oil recovery. Even though significant progress has been made in these areas, many challenges still remain. For instance, the leakage of stored CO2 may occur due to the capillary trapping failure of cap rock. Approximately 70% of oil cannot be easily recovered from underground, because the oil is held in tight porous rocks. Although CO2 storage and enhanced oil recovery are engineering processes at a geological scale, they are predominantly controlled by the transport and displacement of CO2 and reservoir fluids in aquifers and reservoirs, which are further controlled by wetting and fluid properties at pore scale. This work focuses on experimental investigations of pore-scale wetting and displacement of fluids and CO2 in porous core samples. Pore wetting, which has been measured based on contact angle, is a principal control on multiphase flow through porous media. However, contact angle measurement on other than flat surfaces still remains a challenge. In order to indicate the wetting in a small pore, a new pore contact angle measurement technique is developed in this study to directly measure the contact angles of fluids and CO2 in micron-sized pores. The equilibrium and dynamic contact angles of various liquids are directly measured in single glass capillaries, by studying the effects of surface tension, viscosity and chemical structure. The pore contact angles are compared with the contact angles on a planar substrate. The pore contact angle of a confined liquid in a glass capillary differs from the contact angle measured on a flat glass surface in an open space. Surface tension is not the only dominant factor affecting contact angle. The static contact angle in a glass pore also varies with liquid chemical structure. Viscosity and surface tension can significantly affect the dynamic pore contact angle. A new empirical correlation is developed based on our experimental data to describe dynamic pore wetting. The CO2-fluid contact angle in porous media is an important factor affecting the feasibility of long-term permanent CO2 storage. It determines CO2 flow and distribution in reservoirs or aquifers, and thus ultimately finally the storage capacity. CO2-fluid contact angles were measured in small water-wet pores and oil-wet pores, investigating the effect of CO2 phase (gas/liquid/supercritical). The CO2 phase significantly affects the CO2-fluid contact angle in an oil-wet pore. Supercritical CO2-fluid contact angles are larger than gas CO2-fluid contact angles, but are smaller than liquid CO2-fluid contact angles. However, this significant CO2 phase effect on contact angle was not observed in a water-wet pore. Another key issue considered in this study is two-phase flow displacement in porous media. This strongly relates to the important macroscopic parameters for multiphase flow transport in porous media, such as capillary pressure and relative permeability. Here CO2-water displacements are studied by conducting CO2 flooding experiments in a sandstone core sample, considering the effects of CO2 phase, pressure and CO2 injection rate. The capillary pressure-saturation curve, water production behaviour and relative permeability are investigated for gas CO2-water, liquid CO2-water and supercritical CO2-water displacements in porous media. The pressure-dependant drainage capillary pressures are obtained as a result of CO2-water interfacial tension. Various water production behaviours are obtained for gas CO2-water and liquid CO2-water displacements, mainly due to the effect of CO2 dissolution. The significant irregular capillary pressure-saturation curves and water production behaviors can be observed for the supercritical CO2-water displacements. The water and CO2 relative permeabilities for CO2-water displacements in a porous media are then predicted.
|
Page generated in 0.0458 seconds