Spelling suggestions: "subject:"chemotherapeutic used"" "subject:"extratherapeutic used""
1 |
Anti-oxidative, anti-inflammatory and hepato-protective effects of ligustrum robustum.January 2000 (has links)
Lau Kit-Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 144-164). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.v / Declaration --- p.vi / Table of contents --- p.vii / List of Tables --- p.x / List of Figures --- p.xi / List of Abbreviations --- p.xv / Chapter Chapter One: --- General Introduction / Chapter 1.1 --- Tea and Ku-Ding-Cha --- p.1 / Chapter 1.2 --- Ligustrum robustum / Chapter 1.2.1 --- The plant --- p.4 / Chapter 1.2.2 --- Chemical constituents --- p.4 / Chapter 1.2.3 --- Pharmacological activities --- p.4 / Chapter 1.2.4 --- Toxicity --- p.5 / Chapter 1.3 --- Objectives and scope of the project --- p.7 / Chapter Chapter Two: --- Antioxidative effect / Chapter 2.1 --- Introduction / Chapter 2.1.1 --- Oxidants and antioxidants --- p.8 / Chapter 2.1.2 --- In vitro antioxidative tests / Chapter 2.1.2.1 --- PMS-NADH system --- p.19 / Chapter 2.1.2.2 --- Fe3+/ascorbate/H202 system --- p.19 / Chapter 2.1.2.3 --- Red-blood-cell hemolysis model --- p.20 / Chapter 2.2 --- Objectives --- p.22 / Chapter 2.3 --- Materials and Methods / Chapter 2.3.1 --- Materials / Chapter 2.3.1.1 --- Guizhou Ku-Ding-Cha --- p.23 / Chapter 2.3.1.2 --- Other tea leaves --- p.23 / Chapter 2.3.1.3 --- Animals --- p.23 / Chapter 2.3.1.4 --- Chemicals --- p.24 / Chapter 2.3.2 --- Methods / Chapter 2.3.2.1 --- Aqueous extraction of L. robustum and other tea leaves --- p.25 / Chapter 2.3.2.2 --- Ethanol extraction of L. robustum and fraction separations --- p.25 / Chapter 2.3.2.3 --- Activity-guided purification of L. robustum --- p.26 / Chapter 2.3.2.4 --- Assays for testing antioxidative effect / Chapter 2.3.2.4.1 --- PMS-NADH system --- p.28 / Chapter 2.3.2.4.2 --- Fe3+/ascorbate/H202 system --- p.28 / Chapter 2.3.2.4.3 --- Red-blood-cell hemolysis model --- p.29 / Chapter 2.3.2.5 --- Statistical analysis --- p.29 / Chapter 2.4 --- Results / Chapter 2.4.1 --- Ligustrum robustum and other tea leaves --- p.30 / Chapter 2.4.2 --- Ethanol extract of L. robustum --- p.48 / Chapter 2.4.3 --- Water-soluble and water-insoluble fractions --- p.52 / Chapter 2.4.4 --- "Fractions B1, B2 and B3" --- p.56 / Chapter 2.4.5 --- Sub-fractions B2-1 to B2-16 --- p.61 / Chapter 2.4.6 --- Pure compounds --- p.66 / Chapter 2.4.7 --- Changes in antioxidant effects --- p.72 / Chapter 2.5 --- Discussion / Chapter 2.5.1 --- Antioxidant potency of L. robustum --- p.76 / Chapter 2.5.2 --- Effects of extraction methods on antioxidant activities --- p.78 / Chapter 2.5.3 --- Active antioxidant components of L. robustum --- p.78 / Chapter 2.5.4 --- Structure-activity relationship of glycosides and flavonoid --- p.80 / Chapter 2.5.5 --- Antioxidant mechanism of L. robustum --- p.81 / Chapter 2.5.6 --- Prospects for further investigation --- p.82 / Chapter Chapter Three: --- Anti-inflammatory effect / Chapter 3.1 --- Introduction / Chapter 3.1.1 --- Mechanisms and mediators of inflammation --- p.83 / Chapter 3.1.2 --- In vivo anti-inflammatory assays / Chapter 3.1.2.1 --- Acetic acid-induced vascular permeability test --- p.94 / Chapter 3.1.2.2 --- Croton oil-induced ear edema test --- p.94 / Chapter 3.2 --- Objective --- p.96 / Chapter 3.3 --- Materials and Methods / Chapter 3.3.1 --- Materials / Chapter 3.3.1.1 --- Animals --- p.97 / Chapter 3.3.1.2 --- Chemicals --- p.97 / Chapter 3.3.2 --- Methods / Chapter 3.3.2.1 --- Assays for testing anti-inflammatory effect / Chapter 3.3.2.1.1 --- Acetic acid-induced vascular permeability test --- p.98 / Chapter 3.3.2.1.2 --- Croton oil-induced ear edema test --- p.98 / Chapter 3.3.2.2 --- Statistical analysis --- p.99 / Chapter 3.4 --- Results / Chapter 3.4.1 --- Acetic acid-induced vascular permeability test --- p.100 / Chapter 3.4.2 --- Croton oil-induced ear edema test --- p.100 / Chapter 3.5 --- Discussion --- p.103 / Chapter Chapter Four: --- Hepato-protective effect / Chapter 4.1 --- Introduction / Chapter 4.1.1 --- Liver structures and functions --- p.105 / Chapter 4.1.2 --- Carbon tetrachloride-induced liver injury --- p.112 / Chapter 4.1.2.1 --- Mechanisms --- p.112 / Chapter 4.1.2.2 --- Hepatic cytotoxicity --- p.112 / Chapter 4.1.2.3 --- Diagnostic methods / Chapter 4.1.2.3.1 --- Liver weight --- p.114 / Chapter 4.1.2.3.2 --- Lipid peroxidation --- p.114 / Chapter 4.1.2.3.3 --- Serum enzyme levels --- p.114 / Chapter 4.1.2.3.4 --- Histopathological observation --- p.115 / Chapter 4.2 --- Objectives --- p.116 / Chapter 4.3 --- Materials and Methods / Chapter 4.3.1 --- Materials / Chapter 4.3.1.1 --- Animals --- p.117 / Chapter 4.3.1.2 --- Chemicals --- p.117 / Chapter 4.3.2 --- Methods / Chapter 4.3.2.1 --- Carbon tetrachloride-induced acute liver injury --- p.118 / Chapter 4.3.2.2 --- Statistical analysis --- p.120 / Chapter 4.4 --- Results / Chapter 4.4.1 --- Preventive effect / Chapter 4.4.1.1 --- Liver weight --- p.121 / Chapter 4.4.1.2 --- Malondialdehyde content --- p.121 / Chapter 4.4.1.3 --- Serum aminotransferse levels --- p.121 / Chapter 4.4.1.4 --- Histopathological observations --- p.122 / Chapter 4.4.2 --- Curative effect / Chapter 4.4.2.1 --- Liver weight --- p.126 / Chapter 4.4.2.2 --- Malondialdehyde content --- p.126 / Chapter 4.4.2.3 --- Serum aminotransferse levels --- p.126 / Chapter 4.4.2.4 --- Histopathological observations --- p.126 / Chapter 4.5 --- Discussion --- p.130 / Chapter Chapter Five: --- Prospects for product development --- p.134 / Chapter Chapter Six: --- Conclusion --- p.136 / Appendices / Appendix A. Procedure for determining the activity of aspartate aminotransferase (AST) --- p.139 / Appendix B. Procedure for determining the activity of alanine aminotransferase (ALT) --- p.140 / Appendix C. Procedure for preparing a calibration curve for the measurement of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities --- p.141 / Appendix D. Procedure for tissue preparation for light microscopic study --- p.143 / References --- p.144
|
2 |
Antioxidative and vascular effects of kudingcha (Ligustrum purpurascens).January 2000 (has links)
Wong Yuen Fan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 134-150). / Abstracts in English and Chinese. / ACKNOWLEDGMENTS --- p.i / ABSTRACT --- p.ii / LIST OF ABBREAIATIONS --- p.vii / TABLE OF CONTENTS --- p.ix / Chapter Chapter 1 --- General introduction / Chapter 1.1 --- History of Kudingcha --- p.1 / Chapter 1.2 --- Classification of Kudingcha --- p.1 / Chapter 1.3 --- Composition of Kudingcha --- p.3 / Chapter 1.4 --- Introduction to phenylethanoid glycosides --- p.4 / Chapter 1.4.1 --- Isolation and purification of phenylethanoid glycosides --- p.4 / Chapter 1.4.2 --- Taxonomy of phenylethanoid glycosides --- p.5 / Chapter 1.4.3 --- Structure of phenylethanoid glycosides --- p.5 / Chapter 1.4.4 --- Biosynthesis of phenylethanoid glycosides --- p.6 / Chapter 1.4.5 --- Pharmacological effects of phenylethanoid glycosides --- p.9 / Chapter 1.4.5.1 --- Anticarcinogenic activity --- p.10 / Chapter 1.4.5.2 --- Inhibitory activity of protein kinase C --- p.10 / Chapter 1.4.5.3 --- Immunosuppressive activity --- p.11 / Chapter 1.4.5.4 --- DNA repairing activity --- p.11 / Chapter 1.4.5.5 --- Antibacterial and antiviral activities --- p.11 / Chapter 1.4.5.6 --- Antiinflammatory and antinociceptive activities --- p.12 / Chapter 1.4.5.7 --- Hepatoprotective activity --- p.12 / Chapter 1.4.5.8 --- Inhibitory activity of xanthine oxidase --- p.13 / Chapter 1.4.5.9 --- Antioxidative and scavenging activities --- p.13 / Chapter Chapter 2 --- Isolation and purification of phenylethaonid glycosides in Kudingcha / Chapter 2.1 --- Introduction --- p.15 / Chapter 2.2 --- Objectives --- p.16 / Chapter 2.3 --- Materials and Methods --- p.17 / Chapter 2.3.1 --- Extraction and isolation --- p.17 / Chapter 2.3.2 --- High performance liquid chromatograph (HPLC)analysis --- p.19 / Chapter 2.3.2.1 --- "Acteoside, ligupurpuroside A and osmanthuside B" --- p.19 / Chapter 2.3.2.2 --- cis-Ligupurpuroside B and trans-ligupurpuroside B --- p.19 / Chapter 2.3.3 --- Isolation and purification of isoacteoside --- p.19 / Chapter 2.4 --- Results --- p.24 / Chapter 2.4.1 --- A cteoside --- p.24 / Chapter 2.4.2 --- Osmanthuside B --- p.24 / Chapter 2.4.3 --- Ligupurpuroside A --- p.24 / Chapter 2.4.4 --- trans-Ligupurpuroside B --- p.25 / Chapter 2.4.5 --- cis-Ligupurpuroside B --- p.25 / Chapter 2.4.6 --- Isoacteoside --- p.25 / Chapter 2.4.6.1 --- Thermal stability --- p.25 / Chapter 2.5 --- Discussions --- p.27 / Chapter 2.5.1 --- Acteoside --- p.27 / Chapter 2.5.2 --- Osmanthuside B --- p.27 / Chapter 2.5.3 --- Ligupurpuroside A --- p.28 / Chapter 2.5.4 --- trans-Ligupurpuroside B --- p.29 / Chapter 2.5.5 --- cis-Ligupurpuroside B --- p.29 / Chapter 2.5.6 --- Isoacteoside --- p.30 / Chapter Chapter 3 --- Inhibitory effect of phenylethanoid glycosides isolated from Kudingcha on Cu2+-mediated LDL oxidation in vitro / Chapter 3.1 --- Introduction --- p.36 / Chapter 3.2 --- Mechanisms of lipoprotein oxidation in vivo --- p.36 / Chapter 3.2.1 --- Oxidants underlying LDL oxidation --- p.36 / Chapter 3.2.2 --- Oxidative modification of LDL --- p.37 / Chapter 3.2.3 --- Role of oxidatively modified LDL in atherogenesis --- p.38 / Chapter 3.2.4 --- Antioxidants and atherosclerotic heart disease --- p.40 / Chapter 3.2.5 --- Measuring the thiobarbituric acid-reactive substances (TBARS) formation as an index to monitor LDL oxidation --- p.41 / Chapter 3.2.6 --- Effect of flavonoids on Cu2+-mediated human LDL oxidation --- p.41 / Chapter 3.3 --- Objectives --- p.43 / Chapter 3.4 --- Materials and methods --- p.44 / Chapter 3.4.1 --- LDL isolation --- p.44 / Chapter 3.4.2 --- LDL oxidation --- p.44 / Chapter 3.4.3 --- Thiobarbituric acid-reactive substances (TBARS) assay --- p.45 / Chapter 3.4.4 --- Interactions of phenylethanoid glycosides isolated from Kudingcha with Cu2+ in human LDL oxidation --- p.45 / Chapter 3.4.5 --- Statistics --- p.46 / Chapter 3.5 --- Results --- p.47 / Chapter 3.5.1 --- Protective effect of the major phenylethanoid glycosides isolated from Kudingcha on LDL oxidation --- p.47 / Chapter 3.5.2 --- Varying protective effect of individual major Kudingcha phenylethanoid glycosides --- p.47 / Chapter 3.5.3 --- Interactions of Kudingcha phenylethanoid glycosides with Cu2+in human LDL oxidation --- p.51 / Chapter 3.5 --- Discussions --- p.55 / Chapter Chapter 4 --- Inhibitory effects of Kudingcha phenylethanoid glycosides on a-tocopherol oxidation in vitro / Chapter 4.1 --- Introduction --- p.58 / Chapter 4.1.1 --- LDL oxidation and atherosclerosis --- p.58 / Chapter 4.1.2 --- Role of vitamin E in LDL lipid peroxidation --- p.59 / Chapter 4.1.3 --- Interaction of tocopherol interactions with other antioxidants and synergists --- p.61 / Chapter 4.2 --- Objectives --- p.62 / Chapter 4.3 --- Materials and Methods --- p.63 / Chapter 4.3.1 --- Depletion of a-tocopherol in LDL --- p.63 / Chapter 4.3.2 --- Regeneration of a-tocopherol in LDL --- p.63 / Chapter 4.3.3 --- HPLC analysis of a-tocopherol in LDL --- p.64 / Chapter 4.3.4 --- Statistics --- p.64 / Chapter 4.4 --- Results --- p.66 / Chapter 4.4.1 --- Protective effects of Kudingcha phenylethanoid glycosides on a-tocopherol depletion --- p.66 / Chapter 4.4.2 --- Regeneration of a-tocopherol by acteoside --- p.70 / Chapter 4.5 --- Discussions --- p.72 / Chapter Chapter 5 --- Relaxing effects of Kudingcha extract and purified acteoside in rat aortic rings / Chapter 5.1 --- Introduction --- p.75 / Chapter 5.1.1 --- Mechanisms of calcium mobilization --- p.76 / Chapter 5.1.1.1 --- Voltage-dependent calcium channel --- p.76 / Chapter 5.1.1.2 --- Thromboxane A2 Receptor-mediated calcium channel --- p.77 / Chapter 5.1.1.3 --- Protein kinase C in signal transudation --- p.77 / Chapter 5.1.2 --- Contractile proteins and regulation of contraction of vascular smooth muscle --- p.78 / Chapter 5.2 --- Objectives --- p.82 / Chapter 5.3 --- Materials and Methods --- p.83 / Chapter 5.3.1 --- Arterial ring preparation --- p.83 / Chapter 5.3.2 --- Vascular action of Kudingcha extract and acteoside --- p.85 / Chapter 5.3.2.1 --- Relaxant responses of Kudingcha extract and acteoside on U46619 -induced contraction --- p.85 / Chapter 5.3.2.2 --- Relaxant responses of Kudingcha extract and acteoside on high K+ and CaCl2-induced contraction --- p.85 / Chapter 5.3.2.3 --- Relaxant responses of Kudingcha extract and acteoside on protein kinase C- mediated contraction --- p.86 / Chapter 5.3.2.4 --- Effect of acteoside on acetylcholine-induced relaxation --- p.87 / Chapter 5.3.3 --- Statistics --- p.87 / Chapter 5.4 --- Results --- p.88 / Chapter 5.4.1 --- Effects of Kudingcha extract and acteoside on U46619-induced contraction --- p.88 / Chapter 5.4.2 --- Effects of Kudingcha extract and acteoside on high K+-induced contraction --- p.94 / Chapter 5.4.3 --- Effect of Kudingcha extract and acteoside on protein kinase C-mediated contraction --- p.98 / Chapter 5.4.4 --- Effect of acteoside on acetylcholine-induced relaxation --- p.100 / Chapter 5.5 --- Discussions --- p.103 / Chapter Chapter 6 --- Effect of Kudingcha on lipid contents of hamsters and New Zealand Rabbits / Chapter 6.1 --- Introduction --- p.106 / Chapter 6.1.1 --- Factors related to CHD --- p.106 / Chapter 6.1.2 --- Animal model --- p.107 / Chapter 6.2 --- Objectives --- p.108 / Chapter 6.3 --- Materials and Methods --- p.109 / Chapter 6.3.1 --- Rabbit --- p.109 / Chapter 6.3.1.1 --- Measurement of atheroma formation --- p.112 / Chapter 6.3.2 --- Hamster --- p.114 / Chapter 6.3.3 --- Serum lipid determinations --- p.116 / Chapter 6.3.4 --- Determination of hepatic cholesterol content --- p.116 / Chapter 6.3.5 --- Statistics --- p.117 / Chapter 6.4 --- Results --- p.119 / Chapter 6.4.1 --- Growth and Food intake --- p.119 / Chapter 6.4.2 --- "Effect of Kudingcha supplementation on Serum TG, TC and HDL-C" --- p.119 / Chapter 6.4.3 --- Effect of Kudingcha supplementation on hepatic cholesterol contents --- p.124 / Chapter 6.4.4 --- Effect of Kudingcha supplementation on atheroma formation --- p.124 / Chapter 6.5 --- Discussions --- p.129 / Chapter Chapter 7 --- Conclusions --- p.131 / References --- p.134
|
Page generated in 0.0815 seconds