• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 15
  • 14
  • 12
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 199
  • 79
  • 45
  • 40
  • 29
  • 24
  • 23
  • 21
  • 20
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A nitro olefin analog of enone rearrangements the thermal decomposition of an unsymmetrical aralkyl azo compound /

Roberts, Luther Craig, January 1976 (has links)
Thesis--Wisconsin. / Vita. Includes bibliographical references.
12

Isomerization in Olefin Metathesis: Challenges and Opportunities

Higman, Carolyn Sarah January 2016 (has links)
The past two years have witnessed groundbreaking advances in the industrial deployment of olefin metathesis. While metathesis methodologies have been an integral part of the chemical manufacturing landscape for 60 years, implementation in pharmaceutical and specialty chemicals manufacturing represents a new frontier. The imperative to develop greener and more cost-effective manufacturing processes is anticipated to spur further improvements in sustainable synthesis. Advances in catalyst productivity, however, are critical to expansion of the uptake of metathesis methodologies in this and other manufacturing sectors. Key to increased catalyst productivity is elimination of side reactions that lower yield and errode selectivity. Among such reactions, double-bond isomerization is by far most common. Accumulating evidence suggests that unwanted isomerization during olefin metathesis is due to ruthenium species generated via catalyst decomposition. The identification of these species and how they are formed is thus of great importance. Two hydride complexes, RuHCl(CO)(H2IMes)(PCy3) and a dinuclear hydride, are known to form under some circumstances by decomposition of the second-generation Grubbs catalyst, RuCl2(H2IMes)(PCy3)(=CHPh), GII. These complexes have been widely viewed as responsible for unintended isomerization reactions. However, examination of their performance in olefin isomerization under conditions relevant to metathesis reveals that their activity is too feeble to account for the levels of isomerization observed during metathesis. Alternatively, kinetically competent culprits emerge from decomposition studies that reveal unexpected ruthenium products on decomposition of GII during metathesis; specifically, formation of ruthenium nanoparticles. The formation and catalytic non-innocence of RuNPs constitutes a new paradigm in this field, which opens the door to new approaches to prevent or to harness olefin isomerization. Key to prevention, clearly, is circumventing the decomposition pathways that enable ligand stripping from the active catalyst. New approaches to catalyst design that involve use of truncated NHC ligands are also examined. Finally, the power and utility of isomerization when coupled with metathesis is explored. The opportunities and limitations of orthogonal isomerization–metathesis catalysis are examined in the context of the two-step synthesis of cinnamates from 1-allylbenzenes abundant in essential oils. An efficient one-pot, two-catalyst protocol is developed for conversion of these biorenewable feedstocks to high-value-added chemicals.
13

Ruthenium Catalysts for Olefin Metathesis: Understanding the Boomerang Mechanism and Challenges Associated with Stereoselectivity

Bates, Jennifer M. 13 May 2014 (has links)
Ruthenium-alkylidene catalysts are widely used in organic synthesis to generate new C=C bonds in a process known as olefin metathesis. Much research has been dedicated to examining the organometallic species responsible for this transformation, and understanding the benefits and limitations of current state-of-the-art catalysts allows for the design of new and more efficient alternatives. Over the past decade, a topic of much debate has been the so-called “boomerang” (or release-return) mechanism, and whether it operates in the Hoveyda catalysts. The ability of the styrenyl ether ligand, once released from the catalyst during initiation, to be recaptured by the vulnerable active species, has major implications in catalyst recyclability. Chapter 3 describes the use of a 13C-labeled styrenyl ether ligand, in conjunction with an unlabeled second-generation Hoveyda catalyst, to confirm the operation of this mechanism during catalysis. This study demonstrated that the labeled styrenyl ether ligand competes with the substrate for the four-coordinate active species: the labeled moiety rapidly incorporates into the Hoveyda catalyst during both ring-closing- and cross-metathesis examples. Chapter 4 focuses on addressing the selectivity challenges associated with olefin metathesis, particularly during RCM macrocyclization reactions where E/Z mixtures are typically obtained. Designing catalysts that can dictate and control the stereochemistry of a product mixture minimizes waste, and ultimately reduces cost by eliminating the need for separation techniques. A great deal of research has focused on constructing catalysts with ligands that can exert the appropriate steric pressure on a metallocyclobutane intermediate, in order to generate the desired Z-product. Chapter 4 of this thesis examined the ability of a Hoveyda- and Grubbs-type catalyst containing monothiolate ligands, to promote Z-selective RCM macrocyclization. Catalyst lifetimes were also examined, in addition to the impact of altering reaction conditions, specifically concentration, on product distribution. These experiments afford information that will aid in the design of improved catalysts for Z-selective RCM macrocyclization.
14

The synthesis and study of polymers with repeating quaternary centres

Allen, Paul Richard January 1995 (has links)
No description available.
15

The synthesis and properties of some well-defined fluorinated polymers

Towns, Richard Mark January 1996 (has links)
This thesis describes studies directed to the ring opening metathesis polymerisation (ROMP) of some fluorinated compounds using a range of well-defined initiators. Chapter 1 reviews some general aspects of olefin metathesis and ring opening metathesis polymerisation of relevance to the work described in this thesis. Topics such as piezo- and pyro-electricity and optical and electrical properties of conjugated polymers are introduced and these receive more detailed attention later in the thesis. Chapter 2 describes the synthesis, characterisation and properties of . poly(bis(trifluororaethyl)norbomadiene) in detail. The use of various initiating systems that have been used previously and the effect they have on the tacticity of the resulting polymer raicrostructure are discussed. The latter part of this chapter reviews some of the current thinking concerning the detailed mechanistic aspects of this polymerisation. Chapter 3 reviews attempts directed to an improvement in tacticity control in the synthesis of poly(bis(trifluoromethyl)norbomadiene). The synthesis and activity of the new well-defined initiators used in these studies are reported. It is shown that varying the nature of the ancillary Ligands surrounding the metal centre can have a dramatic influence on the tacticity of the resulting polymer. Chapter 4 reports studies directed to an examination of the limits of the well controlled synthesis of poly(bis(trifluoromethyl)norbornadiene). The syntheses of high trans and high cis, highly tactic poly(bis(trifluoromethyl)norbornadiene samples using well-defined initiating systems are described. It is shown that by varying the monomerinitiator ratio, samples with a wide range of molecular weights can be achieved and these are reported. Chapter 5 describes experiments concerning the ROMP of fluorinated monomers containing six membered rings. In particular ROMP studies of the monomers, 2,3-bis(trifluoromethyl)bicyclo[2.2.2]octa-2,5-diene . and 2,3- (tetrafluorobenzo)bicyclo[2.2.2]octatriene are described finally, Chapter 6 provides a summary of the work reported and outlines some ideas for future studies.
16

Combined Theoretical and Experimental Investigation of N-Heterocyclic Carbenes as Lewis Base Catalysts and as Ancillary Ligands in Ru-Catalyzed Olefin Metathesis. Mechanistic Investigation of Fluxional Behavior of Ru-Based Olefin Metathesis Catalysts

Zhugralin, Adil R. January 2011 (has links)
Thesis advisor: Amir H. Hoveyda / Chapter 1. Through the use of quantum theory of atoms in molecules (QTAIM) the similarities and differences between transition metal complexes ligated by phosphines and N-heterocyclic carbenes (NHC) were elucidated. Among the key findings, the phosphines were identified as stronger charge donors than NHCs; however, the latter class of ligands exhibits a weaker p-accepting character than the former. Furthermore, Tolman electronic parameter (TEP) was determined to be an inadequate gauge for the total electron donating ability of phosphines and NHCs; rather TEP can serve as a measurement of population of dp set of orbitals of a metal center in question. Computational and experimental studies of the mechanism of NHC-catalyzed boron and silicon addition to a,ß-unsaturated carbonyls reactions were carried out. Through the use of radical traps the mechanisms involving homolytic cleavage of B-B or B-Si bonds were ruled out. Computational (DFT) studies of the mechanism identified two pathways: (1) direct activation of diboron or borosilyl reagents through coordination of NHC to the B atom, (2) net oxidative addition of the diboron or borosilyl reagents to the carbon (II) of the NHC. The insights gained from the aforementioned studies were employed to rationalize the observed lack of reactivity of NHC-activated diboron complexes in the presence of aldehydes. Chapter 2. New C(1)-symmetric chiral monodentate N-heterocyclic carbenes were prepared, and corresponding chiral Ru-carbene complexes were synthesized. These complexes were employed to gain empirical understanding of factors that govern stereoselectivity in Ru-catalyzed enantioselective olefin ring-closing metathesis. The data thus obtained was employed to infer that syn-to-NHC reaction pathways are competitive and non-selective. One plausible mechanism, through which syn-to-NHC pathways can be accessed, involves Berry pseudorotations. Through the use of stereogenic-at-Ru complexes diastereomeric Ru-carbenes were isolated (silica gel chromatography) and spectroscopically characterized in solution phase. The diastereomeric Ru-carbenes were found to undergo non-metathesis stereomutations at Ru center, thereby providing additional support for the above hypothesis regarding accessibility of syn-to-NHC olefin metathesis pathways. Non-metathesis stereomutation at Ru was found to be accelerated in the presence of protic additives, suggesting the plausibility of hydrogen bonding between the acidic proton and the X-type ligands on Ru. Occurrence of hydrogen bonding was corroborated through the use of chiral allylic alcohols in Ru-catalyzed diastereoselective ring-opening/cross metathesis, which was developed into a versatile method for highly diastereoselective functionalization of terminal olefins. / Thesis (PhD) — Boston College, 2011. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
17

Structure-activity relationships in olefin polymerization catalysts

Price, Craig Justin 15 May 2009 (has links)
The thermodynamic parameters associated with the copolymerization of ethylene and carbon dioxide were calculated using bond dissociation energies, the Benson additivity method and density functional theory calculations (DFT). In all cases, the formation of an alternation copolymer was found to be endergonic at any reasonable polymerization temperatures (the ceiling temperature is calculated to be -159 °C). However, the polymerization was calculated to be exergonic at room temperature, as long as the incorporation of CO2 is less than 29.7 mol%. Experiments failed to provide evidence of any CO2 incorporation, despite previously published reports claiming up to 30 mol%. Octamethyloctahydrodibenzofluorenyl (Oct) has profound steric consequences when incorporated into metallocene olefin polymerization catalysts – including increased catalytic activity and stereoselectivity. However, the electronic effect of the ligand’s four electron-donating tertiary alkyl groups is less understood. NMR and DFT calculations were used to study the electronic nature of the Oct moiety – both as a part of ansa-metallocene pre-catalysts and as an independent molecule. The results show that Oct is more electron rich than other cyclopentadienyl analogues and that the electronics of the ligand are readily conveyed to the metal center. Upon activation, the steric bulk of the Oct moiety dominates the immediate environment around the metal center. Evidence is presented that supports previous theories about Oct’s ability to influence the counteranion distance, thereby increasing the catalytic activity. In addition, excess trimethyl aluminum (TMA) is known to be detrimental to catalytic activity and results uphold this belief – although the magnitude of the effect varies depending on the metallocene being studied. However, UV-Vis data do not support the theory that TMA binds to the catalytically-active metal center, thereby decreasing the catalytic activity; but does not offer an alternate mechanism.
18

Modification of poly(lactic acid) via olefin cross-metathesis

Sinclair, Fern January 2017 (has links)
Poly(lactic acid), PLA, is a viable replacement to petroleum derived polymers due to its renewable feedstock, biodegradability and bioassimilability, yet improvements in its physical, thermal and mechanical properties are required before it can fully enter all commodity markets. This thesis investigates olefin cross-metathesis (CM) as a synthetic strategy to modify the properties of PLA. The use of novel lanthanide and actinide catalysts on the microstructure control of PLA are also explored. The Tebbe reagent was used in a new synthetic strategy to produce a novel olefin derivative of lactide (MML). Olefin CM of MML with hex-1-ene was successful but polymerisation pre- and post-CM was unsuccessful due to monomer instability. CM of another olefin derivative of lactide, 3-methylenated lactide (3-ML) was successful with aliphatic alkenes; hex-1-ene to dodec-1-ene. To overcome competing alcoholysis of the functionalised monomers, which prevented polymerisation, hydrogenation was used to remove the olefin entity followed by successful ring-opening polymerisation (ROP) to produce polymers of low glass-transition temperatures (Tg). Post-polymerisation CM on an olefin containing polymer P(β-heptenolactone) P(β-HL), with methyl acrylate and an epoxide, generated functionalised homopolymers with increased Tg’s. Co-polymerisation of lactide with β-HL generated novel gradient-copolymers. Olefin CM with 15 different cross-partners produced functionalised copolymers with different thermal properties. Based on this route a new methodology was created to introduce two unique functionalities into the polymer backbone by manipulation of the olefin reactivities. Finally, in a collaborative project, uranium and cerium catalysts, Me3SiOU(OArP)3 and Me3SiOCe(OArP)3 - designed out-with the group- were tested and compared as ROP catalysts for lactide. Both catalysts were active in living polymerisations of L-lactide and under immortal conditions the activity and rates of the catalysts were switched, accounted for by a change in the coordination sphere due to ligand displacement. ROP of rac-lactide using the uranium analogue produced heterotactic-biased PLA with a Pr = 0.79.
19

An enantioselective synthesis of glycosidase inhibitors

Ong, Quyen Binh January 1999 (has links)
No description available.
20

Studies on some niobocene derivatives and their catalytic activity

Harrison, Richard John January 1997 (has links)
No description available.

Page generated in 0.036 seconds