Spelling suggestions: "subject:"olefin 6polymerization"" "subject:"olefin copolymerization""
1 |
New approaches to polymerization catalysisWalker, Dennis Allan January 2002 (has links)
No description available.
|
2 |
Structure-activity relationships in olefin polymerization catalystsPrice, Craig Justin 15 May 2009 (has links)
The thermodynamic parameters associated with the copolymerization of ethylene
and carbon dioxide were calculated using bond dissociation energies, the Benson
additivity method and density functional theory calculations (DFT). In all cases, the
formation of an alternation copolymer was found to be endergonic at any reasonable
polymerization temperatures (the ceiling temperature is calculated to be -159 °C).
However, the polymerization was calculated to be exergonic at room temperature, as
long as the incorporation of CO2 is less than 29.7 mol%. Experiments failed to provide
evidence of any CO2 incorporation, despite previously published reports claiming up to
30 mol%.
Octamethyloctahydrodibenzofluorenyl (Oct) has profound steric consequences
when incorporated into metallocene olefin polymerization catalysts – including
increased catalytic activity and stereoselectivity. However, the electronic effect of the
ligand’s four electron-donating tertiary alkyl groups is less understood. NMR and DFT
calculations were used to study the electronic nature of the Oct moiety – both as a part of
ansa-metallocene pre-catalysts and as an independent molecule. The results show that
Oct is more electron rich than other cyclopentadienyl analogues and that the electronics
of the ligand are readily conveyed to the metal center. Upon activation, the steric bulk of the Oct moiety dominates the immediate
environment around the metal center. Evidence is presented that supports previous
theories about Oct’s ability to influence the counteranion distance, thereby increasing the
catalytic activity. In addition, excess trimethyl aluminum (TMA) is known to be
detrimental to catalytic activity and results uphold this belief – although the magnitude
of the effect varies depending on the metallocene being studied. However, UV-Vis data
do not support the theory that TMA binds to the catalytically-active metal center,
thereby decreasing the catalytic activity; but does not offer an alternate mechanism.
|
3 |
New catalysts for olefin polymerizationHanson, Samuel Sunday 21 July 2010
Aluminum- and gallium-bridged ansa-zirconocene compounds (Pytsi)Al[1]ZCP (31a) and (Pytsi)Ga[1]ZCP (31b) containing a bulky trisyl-based ligand with a pyridyl donor group [Pytsi = -C(SiMe3)2SiMe2(2-C5H4N)] were synthesized in 31% and 40% yield, respectively, by the reaction of (Pytsi)ECp2 [E = Al (29a), Ga (29b)] with Zr(NMe2)4 followed by reaction with Me3SiCl. Compounds 29a and 29b were prepared by the reaction of (Pytsi)ECl2 [E = Al (28a), E = Ga (28b)] with two equivalents of NaCp. The molecular structures of 29a and 29b were elucidated in solution by 1H and 13C NMR spectroscopy. Species 31a was characterized by multinuclear NMR spectroscopy while 31b was characterized by CHN elemental analysis, 1H and 13C NMR spectroscopy and mass spectrometry. Both species are the only known examples of aluminum- and gallium-bridged ansa-zirconocenes. Compound 31b in combination with MAO was applied and shown to be highly active for ethylene polymerization at room temperature. The activity of 31b was compared to that obtained for Cp2ZrCl2 using a glass reactor system and was found to be comparable. The influence of precatalyst concentration and ethylene pressure on activity of 31b was studied.
|
4 |
New catalysts for olefin polymerizationHanson, Samuel Sunday 21 July 2010 (has links)
Aluminum- and gallium-bridged ansa-zirconocene compounds (Pytsi)Al[1]ZCP (31a) and (Pytsi)Ga[1]ZCP (31b) containing a bulky trisyl-based ligand with a pyridyl donor group [Pytsi = -C(SiMe3)2SiMe2(2-C5H4N)] were synthesized in 31% and 40% yield, respectively, by the reaction of (Pytsi)ECp2 [E = Al (29a), Ga (29b)] with Zr(NMe2)4 followed by reaction with Me3SiCl. Compounds 29a and 29b were prepared by the reaction of (Pytsi)ECl2 [E = Al (28a), E = Ga (28b)] with two equivalents of NaCp. The molecular structures of 29a and 29b were elucidated in solution by 1H and 13C NMR spectroscopy. Species 31a was characterized by multinuclear NMR spectroscopy while 31b was characterized by CHN elemental analysis, 1H and 13C NMR spectroscopy and mass spectrometry. Both species are the only known examples of aluminum- and gallium-bridged ansa-zirconocenes. Compound 31b in combination with MAO was applied and shown to be highly active for ethylene polymerization at room temperature. The activity of 31b was compared to that obtained for Cp2ZrCl2 using a glass reactor system and was found to be comparable. The influence of precatalyst concentration and ethylene pressure on activity of 31b was studied.
|
5 |
Computational Studies of C-H Bond Activation and Ethylene Polymerization Using Transition Metal ComplexesParveen, Riffat 05 1900 (has links)
This work discusses the C-H bond activation by transition metal complexes using various computational methods. First, we performed a DFT study of oxidative addition of methane to Ta(OC2H4)3A (where A may act as an ancillary ligand) to understand how A may affect the propensity of the complex to undergo oxidative addition. Among the A groups studied, they can be a Lewis acid (B or Al), a saturated, electron-precise moiety (CH or SiH), a σ-donor (N), or a σ-donor/π-acid (P). By varying A, we seek to understand how changing the electronic properties of A can affect the kinetics and thermodynamics of methane C–H activation by these complexes. For all A, the TS with H trans to A is favored kinetically over TS with CH3 trans to A. Upon moving from electron-deficient to electron-rich moieties (P and N), the computed C–H activation barrier for the kinetic product decreases significantly. Thus, changing A greatly influences the barrier for methane C–H oxidative addition by these complexes. Secondly, a computational study of oxidative addition (OA) of methane to M(OC2H4)3A (M = Ta, Re and A = ancillary ligand) was carried out using various computational methods. The purpose of this study was to understand how variation in A and M affects the kinetics and thermodynamics of OA. Results obtained from MP2 calculations revealed that for OA of CH4 to Re(OC2H4)3A, the order of ΔG‡ for a choice of ancillary ligand is B > Al > SiH > CH > N > P. Single point calculations for ΔG‡ obtained with CCSD(T) showed excellent agreement with those computed with MP2 methods. MCSCF calculations indicated that oxidative addition transition states are well described by a single electronic configuration, giving further confidence in the MP2 approach used for geometry optimization and ΔG‡ determination, and that the transition states are more electronically similar to the reactant than the product. Thirdly, a computational study of olefin polymerization has been performed on 51 zirconocene catalysts. The catalysts can be categorized into three classes according to the supporting ligand framework: Class I - Cp2ZrCl2 (ten catalysts), Class II - CpIndZrCl2 (thirty-eight catalysts), and Class III - Ind2ZrCl2 (three catalysts), Cp = η5-cyclopentaidenyl, Ind = η5-indenyl. Detailed reaction pathways, including chain propagation and chain termination steps, are modeled for ethylene polymerization using Class II catalysts. Optimized structures for reaction coordinates indicated the presence of α-agostic interactions in the transition states (TSs) for both the 1st and 2nd ethylene insertions as well as in the ethylene π-complex of the Zr-nPr cation. However, β-agostic interactions predominate in the cationic n-propyl and n-pentyl intermediates. The calculated relative Gibbs free energies show that the TS for insertion of ethylene into the Zr-CH3+ bond is the highest point on the computed reaction coordinates. This study, in concert with previous work, suggests that the type of ring attached to Zr (Cp vs. Ind) affects the reaction kinetics and thermodynamics less significantly than the type of substituents attached to the Cp and indenyl rings, and that substituent effects are even greater than those arising from changing the metal (Zr vs. Hf)
|
6 |
Single-Site Olefin Polymerization Catalysts via the Molecular Design of Porous SilicaMcKittrick, Michael W. 25 March 2005 (has links)
The major goals of this work were to: develop a new methodology for the preparation of site-isolated catalytic sites on a silica surface, prepare the first truly single-site supported metallocene/CGC polymerization catalyst, and develop structure-reactivity relationships for these new systems.
To synthesize these novel catalysts, the approach taken was to develop a protocol which allows for the synthesis of an aminosilica material with isolated, uniform amine sites. This patterned aminosilica was then used as a scaffold to support a constrained geometry catalyst. These functionalizations occurred at essentially a quantitative level, in stark contrast to previous literature reports. The patterned catalysts were evaluated in the polymerization of ethylene and compared to densely loaded literature materials. Overall, it was found the patterned materials were 5-10 times more active than traditional immobilized CGC catalysts.
The patterned catalysts were also found to be effective catalysts for the copolymerization of norbornenes (including functionalized norbornenes) and ethylene, the first reported use of a tethered CGC for the production of ethylene-norbornene copolymers. The control materials were inactive in these polymerizations, providing further evidence that the patterning protocol allows for the synthesis of unique highly active, isolated catalytic sites.
Various structural components of the immobilized CGC developed in this work were tested for their impact on catalyst synthesis and reactivity in ethylene polymerizations. The results showed the patterned materials in general behaved according to the trends seen in homogeneous CGC polymerizations. These results, while congruent with similar homogeneous CGC studies, are in direct conflict with previous work on supported CGCs reported in the literature. This discrepancy is likely the result of the difference between the isolated, possibly single-site patterned catalysts developed in the course of this work and the multi-sited catalysts prepared by traditional supporting protocols. This also further illustrates the difficulty in developing structure-reactivity relationships when ill-defined solid catalysts are used.
|
7 |
Anaerobic electrospray ionization mass spectrometry of methylalumoxane and zirconium complexesJoshi, Anuj 22 December 2020 (has links)
In this thesis, the reactivity and synthesis of methylalumoxane (MAO) via electrospray ionization mass spectrometry (ESI-MS) was investigated. The olefin polymerization catalyst [Cp2Zr(μ-Me)2AlMe2]+ [B(C6F5)4]− was also used to evaluate the efficacy of a nitrogen generator as a source for desolvation gas for ESI-MS analysis. The same catalyst was then used to study catalyst deactivation after 1-hexene addition.
MAO ionizes very selectively in the presence of octamethyltrisiloxane (OMTS) to generate [Me2Al·OMTS]+ [(MeAlO)16(Me3Al)6Me]−. The advantage of this transformation was used to examine the reactivity and synthesis of MAO. The reactivity of this ion pair with other trialkyl aluminum (R3Al) components was studied both offline and in real-time. The exchanges are fast and reversible, and the methyl groups on the cation are also observed to exchange with the added R3Al species. MAO is also famously intractable to structural elucidation, consisting as it does of a complex mixture of oligomers generated from hydrolysis of pyrophoric trimethylaluminum (TMA). Synthesis of MAO was probed in real-time by ESI-MS, and the principal activated product of the benchtop synthesis was found to be the same as that observed in industrial samples, namely [(MeAlO)16(Me3Al)6Me]–. Computationally, a new sheet structure for this ion was proposed.
The increasing competitiveness of nitrogen generators, which provide gas purity levels that vary inversely with flow rate, prompted an investigation of the effect of gas-phase oxygen on the speciation of ions by ESI-MS. The most reactive species studied, the reduced titanium complex [Cp2Ti(NCMe)2]+[ZnCl3]− and the olefin polymerization pre-catalyst [Cp2Zr(μ-Me)2AlMe2]+[B(C6F5)4]−, only exhibited detectable oxidation when they were rendered coordinatively unsaturated through in-source fragmentation. The catalyst [Cp2Zr(μ-Me)2AlMe2]+[B(C6F5)4]− was further studied by ESI-MS to understand better the complexities of catalyst deactivation in the polymerization of 1-hexene.
I also contributed to other projects, namely the interaction of neutral donors with MAO, saturation problems in ESI-MS, and ligand substitution reaction in ruthenium complexes, and my work on all these projects are summarized in this thesis. / Graduate
|
8 |
Organic/inorganic hybrid amine and sulfonic acid tethered silica materials: synthesis, characterization and applicationHicks, Jason Christopher 22 August 2007 (has links)
The major goals of this thesis were to: (1) create a site-isolated aminosilica material with higher amine loadings than previously reported isolation methods, (2) use spectroscopic, reactivity, and catalytic (olefin polymerization precatalysts) probes to determine isolation of amine groups on these organic/inorganic hybrid materials, (3) synthesize an organic/inorganic hybrid material capable of activating Group 4 olefin polymerization precatalysts, and (4) synthesize a high amine loaded organic/inorganic hybrid material capable of reversibly capturing CO2 in a simulated flue gas stream.
The underlying motivation of this research involved the synthesis and design of novel amine and sulfonic acid materials. Traditional routes to synthesize aminosilicas have led to the formation of a high loading of multiple types of amine sites on the silica surface. Part of this research involved the creation of a new aminosilica material via a protection/deprotection method designed to prevent multiple sites, while maintaining a relatively high loading. As a characterization technique, fluorescence spectroscopy of pyrene-based fluorophores loaded on traditional aminosilicas and site-isolated aminosilicas was used to probe the degree of site-isolation obtained with these methods. Also, this protection/deprotection method was compared to other reported isolation techniques with heterogeneous Group 4 constrained-geometry inspired catalysts (CGCs). It was determined that the degree of separation of the amine sites could be controlled with protection/deprotection methods. Furthermore, an increase in the reactivity of the amines and the catalytic activity of CGCs built off of the amines was determined for aminosilicas synthesized by a protection/deprotection method. The second part of this work involved developing organic/inorganic hybrid materials as heterogeneous Brønsted acidic cocatalysts for activation of olefin polymerization precatalysts. This was the first reported organic/inorganic hybrid sulfonic acid functionalized silica material capable of activating metallocenes for the polymerization of ethylene when small amounts of an alkylaluminum was added. Lastly, an organic/inorganic hybrid hyperbranched aminosilica material capable of capturing carbon dioxide from flue gas streams was synthesized. This material was determined to capture CO2 with capacities higher than currently reported aminosilica adsorbents.
|
9 |
Preparação e estudo de reatividade de sistemas catalíticos, a base de zirconocenos, frente à reação de homo- e copolimerização de eteno / Preparation and reative studies of catalytic systems based on zirconocenes, face to homo-and co-polimerization reation of eteneFreitas, Alan John Duarte de 28 February 2007 (has links)
Catalytic systems based on zirconoces which are able to polymerize ethene have been
studied. Structural modifications on the basic catalytic precursor, diphenylmethylidene(η5-
cyclopentadienyl)(η5-9-fluorenyl) zirconium dichloride (5a) have been carried out. The
catalytic precursors 5a and bis(para-fluorophenyl)methylidene(η5-cyclopentadienyl)(η5-9-
fluorenyl)zirconium dichloride (5b) were synthesized, as well the pre-ligand (1-
cyclopentadienyl)(9-fluorenyl)[1,1-bis(para-methoxyphenyl)]methane (3c).
Complex Ph2C(Cp)(Flu)ZrCl2 was supported on silica by two different techniques. i)
directly on silica, grafting, and ii) on silica modified with MAO.
Catalytic tests on homopolymerization of ethene and copolymerization of ethene/1-
hexene reactions, using the catalytic precursor 5a, were carried out either on homogeneous
and heterogeneous media. The polymers obtained were characterized and their properties
were correlated with the reaction polymerization conditions.
Three different reactors, under different reaction conditions, were employed to carried
out polymerization reactions.
Several analytical techniques were employed to characterize the pre-ligands, catalytic
precursors, polymers, and supports obtained. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho foram estudados sistemas catalíticos, a base de metalocenos de
zircônio, capazes de promover reações de polimerização de eteno. Foram realizadas de
modificação estrutural do precursor catalítico base, difenilmetilideno(η5-ciclopentadienil)(η5-
9-fluorenil)zircônio (5a). Os precursores catalíticos metalocênicos 5a e dicloreto de bis(parafluorofenil)
metilideno(η5-ciclopentadienil)(η5-9-fluorenil)zircônio (5b) foram sintetizados,
como também o pré-ligante (1-ciclopentadienil)(9-fluorenil)[1,1-bis(para-metoxifenil)]
metano (3c).
O complexo Ph2C(Cp)(Flu)ZrCl2 (5a) foi suportado em sílica através de duas técnicas:
i) diretamente em sílica, grafting e ii) em sílica modificada por metilaluminoxano (MAO).
Foram realizados testes catalíticos empregando-se o precursor catalítico 5a, tanto em
meio homogêneo, quanto heterogêneo, frente a reações de homopolimerização de eteno e
copolimerização de eteno/1-hexeno. Os polímeros obtidos foram caracterizados e suas
propriedades foram correlacionadas com as condições da reação de polimerização.
As reações de polimerização foram realizadas em três diferentes reatores, sob
diferentes condições reação.
Várias técnicas analíticas foram empregadas para caracterização dos pré-ligantes,
precursores catalíticos, polímeros e suportes obtidos.
|
10 |
Dynamic Modelling of a Fixed Bed Reactor to Study the First Instants of Gas Phase Ethylene Polymerisation / Modélisation en dynamique d'un réacteur à lit fixe pour étudier les premiers instants de la polymérisation de l'éthylène en phase gazHazard Browning, Barbara 09 July 2013 (has links)
La polymérisation des oléfines à l'aide de catalyseurs metallocène est une réaction développée au niveau industriel. Bien que les premiers instants de la réaction aient une importance déterminante pour le procédé, ils n'ont fait l'objet que de très peu de travaux de recherche. Dernièrement, le l'équipe du prof. Mc Kenna a conçu un réacteur de type lit fixe pour étudier en détail ces premiers instants de la réaction. Néanmoins, face à la complexité de la réaction étudiée, un travail de modélisation s'avérait nécessaire afin de mieux appréhender l'ensemble des phénomènes influant sur les résultats et ainsi proposer des améliorations à ce montage expérimental. C'est ce travail qui est présenté dans ce manuscrit. Le premier modèle considère le réacteur comme un calorimètre semi-ouvert sur la matière en entrée, et utilise des lois cinétiques simplifiées. Il a ainsi était démontré que l'augmentation de la température dans le réacteur était un paramètre particulièrement important. Le design a ainsi été modifié en conséquence afin de contrôler l'exothermie de la réaction. Dans un second temps, une étude fine sur les mesures de pression récupérées dans le réacteur a été réalisée mettant en avant que le régime transitoire de montée en pression avait un rôle clef sur cette réaction. L'intégration de ces données a permis d'améliorer le modèle utilisé. Contrairement aux résultats obtenus sur des temps de réaction longs, il a été démontré que la désactivation était plus rapide à basse température lors des premiers instants de la réaction / The behaviour of silica supported metallocene catalyst in the early moments of olefin polymerization is not well understood. The complexity, rapidity and high exothermicity of the reaction impede observation of the kinetics and morphological changes. The fixed bed reactor constructed by McKenna’s group is designed to study these first instants of gas phase olefin polymerisation. The purpose of the modelling work presented is to gain understanding and improve the set-up through better knowledge of the reactor conditions. After a literature survey, the existing set-up was reviewed and analysed. A reactor model was constructed and programmed with polymerisation kinetics represented by a simple relation. The model was validated for individual experiments under optimised conditions. Use of the reactor as a calorimeter was evaluated and a state observer for the polymerisation rate was tested. The model was also used to show that very high temperatures are possible in the reactor bed and to simulate effects of changes to reactor construction and operating conditions. The reactor pressurisation profile is non negligible for experiments of shorter duration. New kinetics based on this were incorporated into the model: these were able to represent series of experiments and take account of the deactivation reaction. Contrary to results from longer duration experiments, our model finds initial deactivation does not appear to be controlled by temperature
|
Page generated in 0.0814 seconds