• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Risk-Based Approach to On-site Wastewater Treatment System Siting Design and Management

Carroll, Steven Paige January 2005 (has links)
The use of on-site wastewater treatment systems (OWTS) for the treatment and dispersal of domestic effluent is common in urban fringe areas which are not serviced by centralised wastewater collection systems. However, due to inappropriate siting and soil characteristics, the failure of these systems has become a common scenario. The current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for OWTS are increasingly coming under scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable on-site wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment are required. The research described in the thesis details the processes adopted for the development and implementation of an integrated risk based approach to OWTS siting, design and management. This involved detailed investigations into resolution of some of the inherent deficiencies identified in the existing OWTS codes and guidelines, including more thorough site and soil assessment and data analysis, integration of the key risk facets of OWTS siting and design, environmental and public health, and the incorporation of scientific knowledge into the assessment processes. The research undertaken focused on four key research areas; (i) assessment of soil suitability for providing adequate treatment and dispersal of domestic wastewater; (ii) contamination of ground and surface waters as a result of OWTS failure and the major factors influencing contaminant fate and transport; (iii) assessment of environmental and public health risks due to poor OWTS performance; and (iv) the development of an integrated risk assessment framework for OWTS siting, design and management. The research conducted was multidisciplinary in nature, with detailed investigations of the physical, chemical and biological processes involved in on-site wastewater treatment and dispersal. This involved extensive field investigations, sampling, laboratory testing and detailed data analysis across the fields of soil science, groundwater and surface water quality, chemical and microbiological contamination, and contaminant fate and transport processes. The interactions between these different disciplines can be complex, resulting in large amounts of data being generated from the numerous field investigations and sampling processes undertaken. In order to understand the complex relationships that can occur, multivariate statistical techniques were utilised. The use of these techniques were extremely beneficial, as not only were the respective relationships between investigated parameters identified, but adequate decisions based on the respective correlations were formulated. This allowed a more appropriate assessment of the influential factors, and subsequently the inherent hazards related to OWTS, to be conducted. The primary research objectives for this research were investigated through a series of scientific papers centred on these key research disciplines. The assessment of soil suitability was achieved through extensive soil sampling throughout the study area and detailed laboratory testing and data analysis. The studies undertaken are described in Chapters 3, 4 and 5. Paper 1 (Framework for soil suitability evaluation for sewage effluent renovation) outlines a framework for assessing the renovation ability of the major soil groups located throughout Southeast Queensland. This framework formed the basis for the assessment of OWTS siting and design risks employed in the developed risk framework. Paper 2 (Use of Chemometric Methods and Multicriteria Decision-Making for Site Selection for Sustainable On-site Sewage Effluent Disposal) details and justifies the multivariate data analysis techniques used in establishing the soil framework. Paper 3 (Assessment of soil suitability for effluent renovation using undisturbed soil columns) describes investigations of the use of undisturbed soil cores for the assessment of long term soil renovation ability. This study was undertaken to validate the research outcomes achieved through the established framework developed in Paper 1. Papers 4, 5 and 6 (Chapters 6 - 8) focus on contamination issues of ground and surface waters resulting from poor OWTS treatment performance, and the different factors that influence pollutant fate and transport. The investigation of ground and surface water contamination, detailed in Paper 4 (Assessment of High Density of Onsite Wastewater Treatment Systems on a Shallow Groundwater Coastal Aquifer using PCA) and Paper 5 (Environmental and anthropogenic factors affecting fecal coliforms and E. coli in ground and surface waters in a coastal environment) was achieved through extensive ground and surface water sampling and testing from several monitored study sites. Analysis of the resulting data indicated that several key factors, including rainfall, site and soil conditions and on-site system density can significantly influence the fate and transportation of pollutants emitted from OWTS. An additional issue found during this research in assessing faecal contamination of water resources was the necessity to ensure that the respective sources of contamination were actually OWTS. The inherent difficulty in identifying the actual source of contamination was resolved by employing a source tracking method, namely antibiotic resistance analysis of faecal coliforms (Paper 6; Sourcing fecal pollution from onsite wastewater treatment systems in surface waters using antibiotic resistance analysis). Finally, Paper 7 (Integrated Risk Framework for On-site Wastewater Treatment Systems) describes the development of the final generic integrated risk assessment framework and how the outcomes, as discussed through the previous 6 papers, were combined to assess the environmental and public health risks inherent in OWTS siting and design. The outcomes of this research have significantly contributed to knowledge of best practice in OWTS siting, design and management. The developed soil suitability framework allows more appropriate assessment of soil characteristics for providing effluent renovation. This is generally not done in the current assessment techniques for OWTS. Additionally, the use of this framework incorporates scientific knowledge into the assessment of OWTS, allowing a more rigorous and scientifically robust assessment process. The processes and techniques used in the soil suitability framework, although based on the common soil types typical of South East Queensland, can be implemented in other regions, provided appropriate soil information is collected for the area of interest. The integrated risk framework has also been developed on a generic level, allowing easy implementation into most assessment processes. This gives the framework the flexibility to be developed for other areas specifically targeting the most influential OWTS siting and design factors, and the potential environmental and public health hazards within those regions. The resulting research outcomes achieved through the studies undertaken were subsequently applied to a case study for the development of the integrated risk framework for the Gold Coast region. The developed framework, based on scientific research, has allowed a more appropriate means of assessing site suitability for OWTS and appropriate management and mitigation of the environmental and public health risks inherent with poor OWTS performance
2

Role of soil physical and chemical characteristics and landscape factors in defining soil behaviour under long term wastewater dispersal

Dawes, Les A. January 2006 (has links)
The use of on-site wastewater treatment systems for the treatment and dispersal of domestic effluent is common in urban fringe areas which are not serviced by centralised wastewater collection systems. However, due to inappropriate siting and inadequate evaluation of soil characteristics, the failure of these systems has become a common scenario. The current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for on-site dispersal areas are coming under increasing scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable on-site wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment of long term performance of on-site dispersal areas are required. The research described in the thesis details the investigations undertaken for the development of robust assessment criteria for on-site dispersal area siting and design and assessment of the long term performance of soil dispersal areas. The research undertaken focused on three key research areas; (i) assessment of site and soil suitability for providing adequate treatment and dispersal of domestic wastewater; (ii) understanding sorption, purification and transport processes influencing retention and release of pollutants and the natural controls governing these processes and (iii) the development of assessment criteria for long term behaviour of soils under effluent dispersal. The research conducted was multidisciplinary in nature, with detailed investigations of the physical and chemical processes involved in on-site wastewater treatment and dispersal. This involved extensive field investigations, sampling and monitoring, laboratory and soil column testing and detailed data analysis across the fields of soil science, groundwater quality, subsurface hydrology, chemical contamination, and contaminant fate and transport processes. The interactions between these different disciplines can be complex which resulted in substantial amounts of data being generated from the numerous field and laboratory investigations and sampling undertaken. In order to understand the complex relationships that can occur, multivariate statistical techniques were utilised. The use of these techniques was extremely beneficial. These techniques not only allowed not only the respective relationships between investigated parameters to be identified, but also adequate decisions based on the correlations were able to be formulated. This allowed a more appropriate assessment of the influential factors, and the prediction of ongoing changes to soil properties due to effluent disposal. The primary outcomes for this research were disseminated through a series of peer reviewed scientific papers centred on these key disciplines. The assessment of site and soil suitability was achieved through extensive soil sampling throughout the study areas and detailed laboratory testing and data analysis. The study identified and investigated the role of influential site and soil characteristics in the treatment performance of subsurface effluent dispersal areas. The extent of effluent travel and the ability of the soil to remove pollutants contained in the effluent by adsorption and/or nutrient uptake were investigated. A framework for assessing the renovation ability of the major soil groups located throughout Southeast Queensland was also developed. The outcomes provide a more rigorous scientific basis for assessing the ability of soil and evaluating site factors to develop more reliable methods for siting effluent dispersal areas. The resulting assessment criteria developed was compared with soil column studies to determine the robustness and validity of the outcomes. This allowed refinement of the assessment criteria in developing a more reliable approach to predicting long term behaviour of soils under sewage effluent dispersal. Multivariate techniques assisted in characterising appropriate soils and to determine their long-term suitability for effluent treatment and dispersal. The assessment criteria developed included physical, chemical and sub-surface hydrological properties of a site and soil which can be used to predict suitability for long term effluent treatment and dispersal. These include:  Moderate to slow drainage (permeability) to assist the movement of effluent (percolation) through the soil profile and allow adequate time for treatment and dispersal to occur. With longer percolation times, the opportunity for exchange and transport processes increase.  Significant soil cation exchange capacity and dominance of exchangeable Ca2+ or exchangeable Mg2+ over exchangeable Na+. Although a soil dominated by Mg2+ is found to promote dispersion of soil particles to some extent, its impact is far less than that of Na+. A stable soil would have a Ca: Mg ratio > 0.5.  Low exchangeable Na+ content to maintain soil stability.  Minimum depth of 400mm of potentially unsaturated soil before encountering a restrictive horizon, to permit adequate purification to take place.  Clay type with Illite and mixed mineralogy soils being the most sensitive to Na+. In general, significant increases in ESP occur in soils with 30 to 40% clay and in the presence of illite clay. Small amounts of smectite clays enhance treatment potential of a soil. The research outcomes have significantly contributed to the knowledge base on best practice in on-site dispersal area siting and design. The developed predictive site and soil suitability assessment criteria allows more appropriate evaluation of site and soil characteristics for providing long term effluent renovation. This is generally not done in the current assessment techniques for on-site dispersal areas. The processes and techniques used in the site and soil suitability assessment, although based on the common soil types typical of South East Queensland, can be implemented in other regions, provided appropriate soil information is collected or available. The predictive assessment criteria have been developed at a generic level, allowing easy implementation into most assessment processes. This gives the framework the flexibility to be developed for other areas specifically targeting the most influential on-site dispersal area siting and design factors, and assessment of long term performance under wastewater application.
3

Potential for Nitrogen Losses from On-Site Wastewater Treatment Systems on Poorly Drained Soils to Curtain Drains

Ghumrawi, Marwa Jamal January 2016 (has links)
No description available.
4

”Rätt avlopp på rätt plats” : – Livscykelanalys av tre enskildaavloppsanläggningar / "Right sewage system in the right place" : - Life cycle assessment of three on-site wastewater treatment options

Sörelius Kiessling, Helene January 2013 (has links)
”Rätt avlopp på rätt plats” – Livscykelanalys av tre enskilda avloppsanläggningar Problemen med övergödning i Östersjön och i Sveriges insjöar är stort och enskildaavlopp pekas ut som en central aktör, framförallt beträffande fosforutsläppen. I Sverigefinns det ungefär en miljon enskilda avloppssystem och nästan hälften av dessa har enså pass bristande vattenrening att de inte uppfyller gällande lagstiftning. Utvecklingenav nya tekniker för rening av avloppsvatten har länge strävat efter att minska utsläppenav övergödande ämnen, detta ibland på bekostnad av andra utsläpp, så somväxthusgaser och försurande ämnen.Det här examensarbetet har därför med hjälp av metodik från livscykelanalys (LCA)utvärderat tre enskilda avloppssystem med tanke på deras utsläpp av växthusgaser,försurande gaser samt övergödande ämnen. Då misstanke också fanns att de lokalaplatsegenskaperna påverkar de enskilda avloppssystemens totala miljöpåverkan,utfördes även en intervjustudie med ett antal av landets kommuner. I intervjustudiengjordes ett försök att identifiera de platsegenskaper som påverkar valet ochutformningen av de enskilda avloppssystemen. De tre avloppssystemen som ingick istudien är markbädd samt kompaktfilter i kombination med antingen ett reaktivt filtermed Polonite®, eller i kombination med kemfällning.Resultatet av studien visade att markbädden hade lägst utsläpp av både växthusgaseroch försurande gaser, men högst utsläpp av övergödande ämnen. De tvåfosforreducerande systemen uppvisade betydlig bättre potential för att reduceraövergödande ämnen, men detta på bekostnad av större utsläpp av växthusgaser ochförsurande gaser, speciellt i fallet med det reaktiva filtersystemet. Lokalaplatsegenskaper, så som näringsretention, visade sig spela en central roll för deundersökta avloppssystemens totala miljöpåverkan. I områden med hög fosforretentionunder vattnets väg till havet skulle avloppssystem med höga utsläpp av fosfor (så somdet markbaserade systemet) kunna vara försvarbara. På de platser i landet därövergödningen är problematisk finns det dock motiv för att använda fosforreducerandesystem. / "Right sewage system in the right place" - Life cycle assessment of three on-sitewastewater treatment options The problem with eutrophication in the Baltic Sea and in Swedish lakes is serious andon-site wastewater treatment systems are considered important, especially forphosphorus emissions. There exist about one million on-site wastewater treatmentsystems in Sweden and almost half of them do not meet current legislation.Development of new technologies for on-site wastewater treatment systems has for along time been focused on reducing emissions of eutrophying substances. However,there is a risk that this reduction could be achieved at the expense of other emissions,such as greenhouse gases and acidifying substances.This master thesis has therefore by use of life cycle assessment (LCA) evaluated threeon-site wastewater treatment systems considering their total emission of greenhousegases, acidifying gases and eutrophying substances. Because local site characteristicswere thought to affect the sewage systems overall environmental impact, an interviewstudy were also carried out with a number of municipal officials. The interview studywas designed to identify the local site characteristics that influence the selection anddesign of the on-site wastewater treatment systems. The three sewage systems includedin the study were a soil treatment system with surface water discharge and a compactbiological filter in combination with either a reactive filter module with Polonite®, or incombination with chemical precipitation.The results of the study reveal that the soil treatment system had the lowest emissions ofboth greenhouse gases and acidifying gases, but the largest emissions of eutrophyingsubstances. The two phosphorus reducing systems showed significantly greaterpotential to reduce the emissions of eutrophying substances, but at the expense of largeremissions of greenhouse gases and acidifying gases, especially in the case of thereactive filter system. Local site characteristics such as the retention of nutrients, provedto play a vital role in the investigated sewage systems overall environmental impact. Inareas with high retention of phosphorus sewage systems with high emissions ofphosphorus (such as the soil treatment system) where favored. However, in areas whereeutrophication is problematic, it is justified to use phosphorus reducing systems.

Page generated in 0.0947 seconds