Spelling suggestions: "subject:"andchip antennas"" "subject:"biochip antennas""
1 |
Overcome the Limitations of Performance Parameters of On-Chip Antennas Based on Metasurface and Coupled Feeding Approaches for Applications in System-on-Chip for THz Integrated-CircuitsAlibakhshikenari, M., Virdee, B.S., See, C.H., Abd-Alhameed, Raed, Falcone, F., Limiti, E. 10 December 2019 (has links)
Yes / This paper proposes a new solution to improve the performance parameters of on-chip antenna designs on standard CMOS silicon (Si.) technology. The proposed method is based on applying the metasurface technique and exciting the radiating elements through coupled feed mechanism. The on-chip antenna is constructed from three layers comprising Si.-GND-Si. layers, so that the ground (GND) plane is sandwiched between two Si. layers. The silicon and ground-plane layers have thicknesses of 20μm and 5μm, respectively. The 3×3 array consisting of the asterisk-shaped radiating elements has implemented on the top silicon layer by applying the metasurface approach. Three slot lines in the ground-plane are modelled and located directly under the radiating elements. The radiating elements are excited through the slot-lines using an open-circuited microstrip-line constructed on the bottom silicon layer. The proposed method to excite the structure is based on the coupled feeding mechanism. In addition, by the proposed feeding method the on-chip antenna configuration suppresses the substrate losses and surface-waves. The antenna exhibits a large impedance bandwidth of 60GHz from 0.5THz to 0.56THz with an average radiation gain and efficiency of 4.58dBi and 25.37%, respectively. The proposed structure has compact dimensions of 200×200×45μm3. The results shows that, the proposed technique is therefore suitable for on-chip antennas for applications in system-on-chip for terahertz (THz) integrated circuits. / Innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424; UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/E0/22936/1.
|
2 |
Millimeter-wave and sub-terahertz on-chip antennas, arrays, propagation, and radiation pattern measurementsGutierrez, Felix, active 2013 10 February 2014 (has links)
This dissertation focuses on the development of next generation wireless
communications at millimeter-wave and sub-terahertz frequencies. As wireless
providers experience a bandwidth shortage and cellular subscribers demand
faster data rates and more reliable service, a push towards unused carriers fre-
quencies such as 28 GHz, 60 GHz, and 180 GHz will alleviate network conges-
tion while simultaneously providing massive bandwidths to consumers. This
dissertation summarizes research in understanding millimeter-wave wireless
propagation, the design and fabrication of millimeter-wave and sub-terahertz
on-chip antenna arrays on an integrated circuit semiconductor process, and
the accurate measurement of on-chip antenna radiation patterns in a wafer
probe station environment. / text
|
Page generated in 0.1052 seconds