• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 10
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 53
  • 19
  • 16
  • 16
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of RF CMOS receiver front-ends for ultrawideband

Guan, Xin 15 May 2009 (has links)
Ultra-Wideband (UWB) technology has become one of the hottest topics in wireless communications, for it provides cost-effective, power-efficient, high bandwidth solution for relaying data in the immediate area (up to 10 meters). This work demonstrates two different solutions for the RF front-end designs in the UWB receivers, one is distributed topology, and the other is based on traditional lumped element topology. The distributed amplifier is one of the attractive candidates for UWB Low Noise Amplifier (LNA). The design, analysis and operation of the distributed amplifiers will be presented. A distributed amplifier is designed with Coplanar Waveguide (CPW) transmission lines in 0.25-μm CMOS process for time domain UWB applications. New design techniques and new topologies are developed to enhance the power-efficiency and reduce the chip area. A compact and high performance distributed amplifier with Patterned Grounded Shield (PGS) inductors is developed in 0.25-μm CMOS process. The amplifier has a measurement result of 7.2dB gain, 4.2-6dB noise figure, and less than -10dB return loss through 0-11GHz. A new distributed amplifier implementing cascade common source gain cells is presented in 0.18-μm CMOS. The new amplifier demonstrates a high gain of 16dB at a power consumption of 100mW, and a gain of 10dB at a low power consumption of 19mW. A UWB LNA utilizing resistive shunt feedback technique is reported in 0.18-μm CMOS process. The measurement results of the UWB LNA demonstrate a maximum gain of 10.5dB and a noise figure of 3.3-4.5dB from 3-9.5GHz, while only consuming 9mW power. Based on the distributed amplifier and resistive shunt-feedback amplifier designs, two UWB RF front-ends are developed. One is a distributed LNA-Mixer. Unlike the conventional distributed mixer, which can only deliver low gain and high noise figure, the proposed distributed LNA-Mixer demonstrates 12-14dB gain ,4-5dB noise figure and higher than 10dB return loss at RF and LO ports over 2-16GHz. To overcome the power consumption and chip area problems encountered in distributed circuits, another UWB RF front-end is also designed with lumped elements. This front-end, employing resistive shunt-feedback technique into its LNA design, can achieve a gain of 12dB and noise figure of 8-10dB through 3-10GHz, the return loss of less than -10dB from 3- 10GHz at RF port, and less than -7dB at LO port, while only consuming 25mA current from 1.8V voltage supply.
2

Ultra-Wideband CMOS Transceiver Front-End for Bio-Medical Radar Sensing

2013 November 1900 (has links)
Since the Federal Communication Commission released the unlicensed 3.1-10.6 GHz frequency band for commercial use in early 2002, the ultra wideband (UWB) has developed from an emerging technology into a mainstream research area. The UWB technology, which utilizes wide spectrum, opens a new era of possibility for practical applications in radar sensing, one of which is the human vital sign monitoring. The aim of this thesis is to study and research the possibility of a new generation humanrespiration monitoring sensor using UWB radar technology and to develop a new prototype of UWB radar sensor for system-on-chip solutions in CMOS technology. In this thesis, a lowpower Gaussian impulse UWB mono-static radar transceiver architecture is presented. The UWB Gaussian pulse transmitter and receiver are implemented and fabricated using 90nm CMOS technology. Since the energy of low order Gaussian pulse is mostly condensed at lower frequency, in order to transmit the pulse in a very efficient way, higher order Gaussian derivative pulses are desired as the baseband signal. This motivates the advancement of the design into UWB high-order pulse transmitter. Both the Gaussian impulse UWB transmitter and Gaussian higher-order impulse UWB transmitter take the low-power and high-speed advantage of digital circuit to generate different waveforms. The measurement results are analyzed and discussed. This thesis also presents a low-power UWB mono-static radar transceiver architecture exploiting the full benefit of UWB bandwidth in radar sensing applications. The transceiver includes a full UWB band transmitter, an UWB receiver front-end, and an on-chip diplexer. The non-coherent UWB transmitter generates pulse modulated baseband signals at different carrier frequencies within the designated 3-10 GHz band using a digitally controlled pulse generator. The test shows the proposed radar transceiver can detect the human respiration pattern within 50 cm distance. The applications of this UWB radar sensing solution in commercialized standard CMOS technology include constant breathing pattern monitoring for gated radiation therapy, realtime monitoring of patients, and any other breathing monitoring. The research paves the way to wireless technology integration with health care and bio-sensor network.
3

Millimeter-Wave Concurrent Dual-Band BiCMOS RFIC Transmitter for Radar and Communication Systems

Huynh, Cuong Phu Minh 1976- 14 March 2013 (has links)
This dissertation presents new circuit architectures and techniques for improving the performance of several key BiCMOS RFIC building blocks used in radar and wireless communication systems operating up to millimeter-wave frequencies, and the development of an advanced, low-cost and miniature millimeter-wave concurrent dual-band transmitter for short-range, high-resolution radar and high-rate communication systems. A new type of low-power active balun consisting of a common emitter amplifier with degenerative inductor and a common collector amplifier is proposed. The parasitic neutralization and compensation techniques are used to keep the balun well balanced at very high frequencies and across an ultra-wide bandwidth. A novel RF switch architecture with ultra-high isolation and possible gain is proposed, analyzed and demonstrated. The new RF switch architecture achieves an ultra-high isolation through implementation of a new RF leaking cancellation technique. A new class of concurrent dual-band impedance matching networks and technique for synthesizing them are presented together with a 25.5/37-GHz concurrent dual-band PA. These matching networks enable simultaneous matching of two arbitrary loads to two arbitrary sources at two different frequencies, utilizing the impedance-equivalence properties of LC networks that any LC network can be equivalent to an inductor, capacitor, open or short at different frequencies. K- and Ka-band ultra-low-leakage RF-pulse formers capable of producing very narrow RF pulses in the order of 200 ps with small rising and falling time for short-range high-resolution radar and high-data-rate communication systems are also developed. The complete transmitter exhibiting unique characteristics obtained from capabilities of producing very narrow and tunable RF pulses with extremely RF leakage and working concurrently in dual bands at 24.5 and 35 GHz was designed. Capability of generating narrow and tunable RF pulses allows the radar system to flexibly work at high and multiple range resolutions. The extremely low RF leakage allows the transmitter to share one antenna system with receiver, turn on the PA at all time, comply the transmitting spectrum requirements, increase the system dynamic range, avoid harming to other systems; hence improving system size, cost and performance. High data-rate in communication systems is achieved as the consequence of transmitting very narrow RF pulses at high rates. In addition, the dissertation demonstrates a design approach for low chip-area, cost and power consumption systems in which a single dual-band component (power amplifier) is designed to operate with two RF signals simultaneously.
4

Study and performance characterization of two key RF hardware subsystems: microwave divide-by-two frequency prescalers and low noise amplifiers

Khamis, Safa January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / William B. Kuhn / This thesis elaborates on the theory and art of the design of two key RF radio hardware subsystems: analog Frequency Dividers and Low Noise Amplifiers (LNAs). Specifically, the design and analysis of two Injection Locked Frequency Dividers (ILFDs), one Regenerative Frequency Divider (RFD), and two different LNAs are documented. In addition to deriving equations for various performance metrics and topology-specific optimization criterion, measurement data and software simulations are presented to quantify several parameters of interest. Also, a study of the design of LNAs is discussed, based on three “regimes:” impedance matching, transconductance-boosting, and active noise cancelling (ANC). For the ILFDs, a study of injection-locked synchronization and phase noise reduction is offered, based on previous works. As the need for low power, high frequency radio devices continues to be driven by the mobile phone industry, Frequency Dividers that are used as prescalars in phase locked loop frequency synthesizers (PLLs) must too become capable of operation at higher frequencies while consuming little power. Not only should they be low power devices, but a wide “Locking Range” (LR) is also desired. The LR is the bandwidth of signals that a Frequency Divider is capable of dividing. As such, this thesis documents the design and analysis of two ILFDs: a Tail-ILFD and a Quench-ILFD. Both of these ILFDs are implemented on the same oscillator circuit, which consumes 2.28 mW, nominally. Measurements of the Tail and Quench-ILFDs’ LRs are plotted, including one representing the Quench-ILFD operating at “very low” power. Also, an RFD is detailed in this thesis, which consumes 410 μW. This thesis documents Locking Ranges for the Tail and Quench-ILFDs of 12% and 3.7% of 6.4 GHz respectively, during nominal operation. In “very low” power mode, the Quench-ILFD has a LR of 4.8% while consuming 219.6 μW of power. For the RFD, simulations report a LR of 16.7% while consuming 410 μW. Recently in 2011, a wideband LNA topology by Nozahi et al., which employs Partial Noise Cancelling (PNC) of the thermal noise generated by active devices, was presented and claimed to achieve a minimum and maximum NF of 1.4 dB and 1.7 dB (from 100 MHz to 2.3 GHz), while consuming 18 mW from a 1.8 V supply. This thesis details the theory, design, and simulation results of a narrowband version of this PNC LNA. In order to compare the largesignal performance of this narrowband LNA to that of a well-known implementation, an LNA employing inductive source-degeneration (referred to as a “S-L LNA”) is designed and analyzed through simulation. The PNC LNA operates at a frequency of 2.3 GHz while the S-L LNA operates at 2.8 GHz. Simulations report a NF of 1.76 dB for the PNC LNA and 2.3 dB for the SL LNA, at their respective operating frequencies. Both LNAs consume roughly 15 mW of quiescent power from a 1.8 V supply. Lastly, a case for the suspected design and layout faults, which caused fabricated versions of the RFD and two LNAs documented in this thesis to fail, is presented. First, measurements of the two LNAs are shown, which display the input impedance of the S-L LNA and the s₂₁ responses for both. Then, general layout concerns are addressed, followed by topology-specific circuit design flaws.
5

Radio-Frequency Integrated-Circuit Design of Image-Reject Downconverter and Variable-Gain Amplifier for Wireless Communications

Pu, Ta-Chun 24 July 2002 (has links)
This thesis presents a 2.4GHz image-reject downconverter fabricated in TSMC 0.25 1P5M CMOS process. The integrated active filter can not only filter out the image signal, but also reduce noise figure degraded by parasitic capacitance in the circuit. The differential LC oscillator fabricated in TSMC 0.35 1P4M CMOS process has properties of low phase noise and wide frequency turning range. Finally, a variable gain amplifier implemented in GCS GaAs HBT process was designed using signal summing architecture. The architecture is advantageous to reducing noise, distortion and increasing operating frequency. This thesis has studied what cause the difference between measurement and simulation for better performance in the future design.
6

An Electronically Reconfigurable Three Band Low-Noise Amplifier in 0.5 μm GaAs pHEMT Technology

Shatzman, Jeffrey A 01 January 2011 (has links) (PDF)
State-of-the-art RF front-end circuits are typically designed to operate at a single frequency. With an increasing number of available wireless standards, personal mobile communication devices require an increasing number of individually designed RF circuits. To save space and cost, one alternative possibility is to reuse much of the circuitry by utilizing electronically reconfigurable topologies. The ubiquitous low-noise amplifier is one of the many circuits that can be redesigned with the reconfigurable aspect in mind. In this thesis, previous work in reconfigurable LNAs is reviewed as well as a brief comparison of CMOS and GaAs processes used for RF amplifiers. Three new reconfigurable LNA topologies are also presented. The first two topologies, based on the common-gate stage and synchronous filters, are investigated but not manufactured. The third design, based on the cascode topology, was manufactured in a 0.5 µm GaAs process with enhancement-mode and depletion-mode pHEMTs. The LNA features 12.7 dB, 13.6 dB, and 13.9 dB of gain and noise figures of 2.7 dB, 3.5 dB, and 4.2 dB at 2.5, 3.6 and 5.8 GHz, respectively. The LNA draws 41 mA from a 3.3 V supply.
7

A VHF/UHF Voltage Controlled Oscillator in 0.5um BiCMOS

Bosley, Ryan Travis 08 April 2003 (has links)
The dramatic increase in market demand for wireless products has inspired a trend for new designs. These designs are smaller, less expensive, and consume less power. A natural result of this trend has been the push for components that are more highly integrated and take up less real estate on the printed circuit board (PCB). Major efforts are underway to reduce the number of integrated circuits (ICs) in newer designs by incorporating several functions into a single chip. Availability of newer technologies such as silicon bipolar with complementary metal oxide semiconductor (BiCMOS) has helped facilitate this move toward more complex circuit topologies onto one die. BiCMOS achieves efficient chip area utilization by combining bipolar transistors, suited for higher frequency analog circuits with CMOS transistors that are useful for digital functions and lower frequency analog circuits. A voltage controlled oscillator (VCO) is just one radio frequency (RF) circuit block that can benefit from a more complex semiconductor process like BiCMOS. This thesis presents the design and evaluation of an integrated VCO in the IBM 5S BiCMOS process. IBM 5S is a 0.5 um, single poly, five-metal process with surface channel PFETs and NFETs. The process also features self-aligned extrinsic base NPN bipolar devices exhibiting ft of up to 24 GHz. The objective of this work is to obtain a VCO design that provides a high degree of functionality while maximizing performance over environmental conditions. It is shown that an external feedback and resonator network as well as a bandgap voltage referenced bias circuit help to achieve these goals. An additional objective for this work is to highlight several pragmatic issues associated with designing an integrated VCO capable of high volume production. The Clapp variant of the Colpitts topology is selected for this application for reasons of robust operation, frequency stability, and ease of implementing in integrated form. Design is performed at 560 MHz using the negative resistance concept. Simulation results from Pspice and the Agilent ADS are presented. Implementation related issues such as bondwire inductances and layout details are covered. The VCO characterization is shown over several environmental conditions. The final nominal design is capable of: tuning over 150 MHz (22%) and delivering â 4.2 dBm into a 50 Ohm load while consuming only 9mA from a 3.0V supply. The phase noise at these conditions is -92.5 dBc/Hz at a frequency offset of 10 kHz from the carrier. Finally, the conclusion of this work lists some suggestions for potential future research. / Master of Science
8

Sistema transmissor CMOS de Radar UWB por varredura eletrônica com arranjo de antenas Vivaldi. / Conceptual model of a CMOS UWB Radar transmitter by electronic scanning with Vivaldi array antenna.

Oliveira, Alexandre Maniçoba de 21 November 2012 (has links)
O objetivo deste trabalho é desenvolver um modelo conceitual de um sistema transmissor de pulsos eletromagnéticos de banda ultra-larga, capaz de realizar o controle da formação do feixe irradiado de forma totalmente eletrônica. Para isso, é proposto um sistema formado por quatro canais iguais e independentes, sendo que cada um é formado por um controlador de atraso programável, com o qual se pode ajustar a defasagem temporal entre os pulsos de cada canal, um gerador de pulso, capaz de sintetizar a quinta derivada do pulso Gaussiano a partir de uma nova proposta de topologia, e um arranjo de antenas do tipo planar de abertura exponencial conhecida como antena Vivaldi. O sistema proposto é apoiado por modelos matemáticos e simulações elétricas post-layout com variação dos parâmetros por Monte Carlo com os programas LTSpice 4 e Microwind 2.6, utilizando as regras de processo padrão CMOS 180nm e eletromagnética tridimensional com o uso do programa CST Microwave 2011. Os resultados obtidos nas simulações, comparados com propostas anteriores, indicam que realmente houve o controle da formação do feixe irradiado cujo lóbulo principal teve uma magnitude média de 11dBi com uma largura angular do feixe de 33º x 38º e possibilidade de variar os ângulos azimutal e de elevação de -15º a 9º e -18º a 6º, respectivamente, para uma frequência central de 6GHz. O pulso utilizado para estimular as antenas foi o pulso Gaussiano em sua quinta ordem de derivação, que teve como resultados médios de simulação uma amplitude de 90mVpp, uma largura de pulso de 370ps a uma taxa de repetição de 100MHz e uma frequência central de 6GHz. / This work aims to develop a conceptual model of the new Ultra Wide-band fifth-order derivative Gaussian pulse transmitter with Vivaldi antenna array for beamforming using the technique of timed-array. It is proposed a system formed by four equal and independent channels, each of which is formed by a programmable delay controller in which one can adjust the delay time between pulses of each channel, a pulse generator, capable to synthesize the fifth derivative of a Gaussian pulse using a new topology, and a planar Vivaldi antenna. The proposed system was supported by mathematical models and post-layout electrical simulations with parameters variation by Monte Carlo in programs LTSpice 4 and MicroWind 2.6 using the CMOS 180nm Standard process rules and using three-dimensional electromagnetic program CST Microwave 2011. The simulation results indicated that there was indeed control on the beam formation irradiated whose main lobe has an average magnitude of 11dBi with an angular width of the beam 33 x 38 (degrees square) and possibility of varying the angles of azimuth and elevation from -15 to 9 degrees and -18 to 6 degrees, respectively, at a center frequency of 6GHz. The pulse used to stimulate the antennas was the fifth order Gaussian one, which had the average results of a simulation 90mVpp amplitude, a pulse width 370ps to a 100MHz repetition rate and a center frequency of 6 GHz..
9

Sistema transmissor CMOS de Radar UWB por varredura eletrônica com arranjo de antenas Vivaldi. / Conceptual model of a CMOS UWB Radar transmitter by electronic scanning with Vivaldi array antenna.

Alexandre Maniçoba de Oliveira 21 November 2012 (has links)
O objetivo deste trabalho é desenvolver um modelo conceitual de um sistema transmissor de pulsos eletromagnéticos de banda ultra-larga, capaz de realizar o controle da formação do feixe irradiado de forma totalmente eletrônica. Para isso, é proposto um sistema formado por quatro canais iguais e independentes, sendo que cada um é formado por um controlador de atraso programável, com o qual se pode ajustar a defasagem temporal entre os pulsos de cada canal, um gerador de pulso, capaz de sintetizar a quinta derivada do pulso Gaussiano a partir de uma nova proposta de topologia, e um arranjo de antenas do tipo planar de abertura exponencial conhecida como antena Vivaldi. O sistema proposto é apoiado por modelos matemáticos e simulações elétricas post-layout com variação dos parâmetros por Monte Carlo com os programas LTSpice 4 e Microwind 2.6, utilizando as regras de processo padrão CMOS 180nm e eletromagnética tridimensional com o uso do programa CST Microwave 2011. Os resultados obtidos nas simulações, comparados com propostas anteriores, indicam que realmente houve o controle da formação do feixe irradiado cujo lóbulo principal teve uma magnitude média de 11dBi com uma largura angular do feixe de 33º x 38º e possibilidade de variar os ângulos azimutal e de elevação de -15º a 9º e -18º a 6º, respectivamente, para uma frequência central de 6GHz. O pulso utilizado para estimular as antenas foi o pulso Gaussiano em sua quinta ordem de derivação, que teve como resultados médios de simulação uma amplitude de 90mVpp, uma largura de pulso de 370ps a uma taxa de repetição de 100MHz e uma frequência central de 6GHz. / This work aims to develop a conceptual model of the new Ultra Wide-band fifth-order derivative Gaussian pulse transmitter with Vivaldi antenna array for beamforming using the technique of timed-array. It is proposed a system formed by four equal and independent channels, each of which is formed by a programmable delay controller in which one can adjust the delay time between pulses of each channel, a pulse generator, capable to synthesize the fifth derivative of a Gaussian pulse using a new topology, and a planar Vivaldi antenna. The proposed system was supported by mathematical models and post-layout electrical simulations with parameters variation by Monte Carlo in programs LTSpice 4 and MicroWind 2.6 using the CMOS 180nm Standard process rules and using three-dimensional electromagnetic program CST Microwave 2011. The simulation results indicated that there was indeed control on the beam formation irradiated whose main lobe has an average magnitude of 11dBi with an angular width of the beam 33 x 38 (degrees square) and possibility of varying the angles of azimuth and elevation from -15 to 9 degrees and -18 to 6 degrees, respectively, at a center frequency of 6GHz. The pulse used to stimulate the antennas was the fifth order Gaussian one, which had the average results of a simulation 90mVpp amplitude, a pulse width 370ps to a 100MHz repetition rate and a center frequency of 6 GHz..
10

Investigation on LIGA-MEMS and on-chip CMOS capacitors for a VCO application

Fang, Linuo 04 July 2007
Modern communication systems require high performance radio frequency (RF) and microwave circuits and devices. This is becoming increasingly challenging to realize in the content of cost/size constraints. Integrated circuits (ICs) satisfy the cost/size requirement, but performance is often sacri¯ced. For instance, high quality factor (Q factor) passive components are difficult to achieve in standard silicon-based IC processes.<p>In recent years, microelectromechanical systems (MEMS) devices have been receiving increasing attention as a possible replacement for various on-chip passive elements, offering potential improvement in performance while maintaining high levels of integration. Variable capacitors (varactor) are common elements used in various applications. One of the MEMS variable capacitors that has been recently developed is built using deep X-ray lithography (as part of the LIGA process). This type of capacitor exhibits high quality factor at microwave frequencies.<p>The complementary metal oxide semiconductor (CMOS) technology dominates the silicon IC process. CMOS becomes increasingly popular for RF applications due to its advantages in level of integration, cost and power consumption. This research demonstrates a CMOS voltage-controlled oscillator (VCO) design which is used to investigate methods, advantages and problems in integrating LIGA-MEMS devices to CMOS RF circuits, and to evaluate the performance of the LIGA-MEMS variable capacitor in comparison with the conventional on-chip CMOS varactor. The VCO was designed and fabricated using TSMC 0.18 micron CMOS technology. The core of the VCO, including transistors, resistors, and on-chip inductors was designed to connect to either an on-chip CMOS varactor or an off-chip LIGA-MEMS capacitor to oscillate between 2.6 GHz and 2.7 GHz. Oscillator phase noise analysis is used to compare the performance between the two capacitors. The fabricated VCO occupied an area of 1 mm^2.<p>This initial attempt at VCO fabrication did not produce a functional VCO, so the performance of the capacitors with the fabricated VCO could not be tested. However, the simulation results show that with this LIGA-MEMS capacitor, a 6.4 dB of phase noise improvement at 300 kHz offset from the carrier is possible in a CMOS-based VCO design.

Page generated in 0.0307 seconds