• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 353
  • 131
  • 86
  • 72
  • 25
  • 16
  • 12
  • 10
  • 9
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 924
  • 527
  • 116
  • 99
  • 96
  • 89
  • 84
  • 68
  • 63
  • 62
  • 60
  • 49
  • 49
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
511

Ověření trvanlivosti popílkových betonů v prostředí XF / Verification of durability of ash concrete in the environment XF

Kušiak, Petr January 2013 (has links)
Fly ash is now much used as an admixture to concrete. This master´s thesis focuses on the use of fly ash as an active admixture in concrete environment for XF. The thesis has two parts. The first part collected theoretical information about the origin and behavior of fly ash in fresh and hardened concrete. In the second part was experimental verification of these characteristics. The purpouse of this thesis is to demonstrate that the fly ash attribute to meet all environmental XF.
512

Analýza datového toku ve Fly-by-Wire systému / Analysis of Data Flow in the Fly-by-Wire System

Kubínová, Zuzana January 2010 (has links)
Software implementovaný v rámci Fly-by-Wire systému firmy Honeywell je složen z mnoha modelů implementovaných v systému Simulink. Tato práce se zabývá hledáním přímých a nepřímých spojitostí mezi jednotlivými signály v systému těchto modelů. Jako vhodný aparát je zvolena teorie grafů. Na základě modelů jsou vygenerovány grafy a úloha nalézt spojitost mezi signály je převedena na úlohu nalézt cestu mezi dvěma vrcholy grafu. Známé algoritmy k vyhledávání cest v grafech určují délku nebo váhu nalezené cesty. Pro tuto aplikaci je ale potřeba rozlišovat cesty primární a sekundární bez ohledu na jejich délku. Proto jsou tyto známé algoritmy upraveny.
513

Šnekový mísič kontinuální / Continual helicoidal mixer

Radoš, Pavel January 2010 (has links)
This work contains a proposal for constructions and workings of a worm mixer of clay, lime, cementand fly ash with water for delivery quantity 18 tons per an hour. The introduction describes problems of mixing and mixers in the preparation of building materials. I have mentioned calculation of the main proportions and drive under the relevant norms and self-fortress control of the stresssed parts of mixer. Drawing documentation is worked into the ACad program and contains the configurations of the proposed machinery and detailed subassembly of important parts of worm mixer.
514

Coal fly ash and acid mine drainage based heterogeneous Fe catalysts Friedel-Crafts alkylation reaction

Hlatywayo, Tapiwa January 2020 (has links)
Philosophiae Doctor - PhD / The catalytic support materials used in the present study are zeolite HBEA and MCM-41. These high silica zeolites were synthesised from coal fly ash (CFA) waste via a novel approach that involved a fusion step, acid assisted silica extraction and removal of Al, Ca and Na from the silica by treatment with oxalic acid. The generated silica was converted to HBEA and MCM-41 via conventional hydrothermal treatment. The metal incorporation onto HBEA was done via two approaches namely; liquid phase ion exchange (LIE) and wet impregnation (WI) while the loading on MCM-41 was only done via WI since the material does not possess exchange sites. The metal solution precursors were AMD and Fe extracted from CFA (FeAsh) via acid leaching followed by pH regulation by concentrated NaOH. This is the first time these solutions were tested as possible metal precursors in catalyst synthesis. / 2021-08-30
515

Examining black soldier fly (Hermetia illucens) composting for urban ag specialty crop production

Catherine Terrell (12322217) 03 May 2022 (has links)
<p>  </p> <p>Urban farmers face many unique challenges associated with the urban environment in which they produce. One of the most expensive and limited resources is access to healthy soils. There is often low organic matter and industrial contaminants present in urban soils, resulting in the need for remediation, such as capping and importing topsoil and compost. Recently, black soldier fly larvae (<em>Hermetia illucens; BSF)</em> have been recognized as an efficient organism used to break-down organic matter and produce a soil amendment comparable to traditional fertilizers. These fly larvae can feed on a wide range of organic waste (plant material, biosolids, food waste, etc.), can break down contaminants such as pharmaceuticals or pesticides, and impact the bioavailability of heavy metals. The resulting material is a digestate that can be applied as a soil amendment, much like the vermicomposting processes of worms. Fly pupae can be harvested and used as a nutrient dense feedstock for livestock or reared to adults to continue the cycle of composting.  Knowledge gaps remain regarding the impact of feedstock on the nutritional quality of the digestate for crop production and the application and implementation of BSF composting on-farm. We found that larval weight is unaffected by diet streams, however, larval length is improved on food waste streams. Additionally, crop growth varies when grown with BSFL digestate.</p>
516

Effects of Environmental Factors on Circadian Activity in the Flesh Fly, Sarcophaga Crassipalpis

Joplin, Karl H., Moore, Darrell 01 March 1999 (has links)
The diel locomotor activity patterns of wandering larvae in the flesh fly, Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae), were examined using a novel apparatus and shown to be primarily diurnal, but with a minority (37%) showing nocturnal activity. In response to the environmental stress of heat shock, a significantly larger proportion (72%) of the larvae became nocturnal. In comparison, adult circadian activity also was predominantly diurnal, but not correlated with the larval activity patterns. In addition, adult patterns showed age-related changes in entrainment and free running period. Finally, the phase of circadian-gated adult eclosion was shown to be entrained by a 3-day exposure to light-dark cycles delivered prior to pupariation, with the phase maintained throughout pupal-adult metamorphosis under constant dark conditions. These results demonstrate that environmental changes may have profound effects on the expression of 24-h activity patterns and circadian rhythms during different life stages throughout development.
517

Assessment of changes in crack density parameter and dynamic shear modulus of sustainable concrete mixtures with silica fume and fly ash replacement after exposure to moderate temperatures.

Subedi, Sujan January 2021 (has links)
No description available.
518

Removal of sulphates from South African mine water using coal fly ash

Madzivire, Godfrey January 2009 (has links)
>Magister Scientiae - MSc / South African power stations generate large amounts of highly alkaline fly ash (FA). This waste product has a serious impact on the environment. Acid mine drainage (AMD) is another environmental problem associated with mining. AMD has high heavy metal content in addition to high SO/- concentrations. Several studies have shown that 80-90 % of SO/- can be removed when FA is codisposed with AMD rich in Fe and AI. In South Africa, many sources of contaminated mine waters have circumneutral pH and much lower concentrations of Fe and Al (unlike AMD), but are rich in Ca, Mg and SO2-4. This study evaluated sol removal from circumneutral mme water (CMW) collected from Middleburg coal mine using coal FA collected from Hendrina power station. The following parameters were investigated: the effect of the amount of FA, the effect of the final pH achieved during treatment, the effect of the initial pH of the mine water and the effect of Fe and Al on SO/- removal from mine water. The precipitation of ettringite at alkaline pH was evaluated to further reduce the SO/- concentration to below the DWAF limit for potable water. Removal of sol from mine water was found to be dependent on: the final pH achieved during treatment, the amount of FA used to treat the mine water and the presence of Fe and Al in the mine water. Treatment of CMW using different CMW:FA ratios; 5:1, 4:1, 3:1, and 2:1 resulted in 55, 60, 70 and 71 % SO/- removal respectively. Treatment of CMW to pH 8.98, 9.88, 10.21, 10.96, 11.77 and 12.35 resulted in 6, 19, 37, 45, 63 and 71 % SO/- removal respectively. When the CMW was modified by adding Fe and Al by mixing with Navigation coal mine AMD and treated to pH 10, 93 % SO/- removal was observed. Further studies were done to evaluate the effects of Fe and Al separately. Treatment of simulated Fe containing AMD (Fe-AMD) to pH 9.54, 10.2, 11.8, and 12.1 resulted in 47, 52,65, and 68 % SO/- removal respectively. When Al containing AMD was treated to pH 9.46, 10.3, 11.5 and 12 percentage SO/- removal of 39, 51,55 and 67 % was observed respectively. Ion chromatography (IC), inductively coupled plasma-mass spectrometry (ICPMS) and inductively coupled plasma-atomic emission (ICP-AES) analysis of the product water, x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectrometry analysis of FA and solid residues collected after treatment of mine water complemented with PHREEQC thermodynamic modelling have shown that the mechanism of S042 - removal from mine water depends on the composition of the mine water. The sol- removal mechanism from CMW was observed to depend on gypsum precipitation. On the other hand sol- removal from mine water containing Fe and Al was dependent on the precipitation of gypsum and Fe and Al oxyhydroxysulphates. The oxyhydroxysulphates predicted by PHREEQC as likely to precipitate were alunite, basaluminite, ettringite, jarosites and jurbanite. Treatment of CMW with FA to pH 12.35 removed sol- from 4655 ppm to approximately 1500 ppm. Addition of amorphous AI(OH)3 to CMW that was treated to pH greater than 12 with FA was found to further reduce the sol concentration to 500 ppm which was slightly above the threshold for potable water of 400 ppm. The further decrease of sol concentration from 1500 to 500 ppm was due to ettringite precipitation. Mine water treatment using FA was found to successfully remove all the major elements such as Fe, AI, Mn and Mg to below the DWAF limit for drinking water. The removal of the major elements was found to be pH dependent. Fe and Al were removed at pH 4-7, while Mn and Mg were removed at pH 9 and 11 respectively. The process water from FA treatment followed by gypsum seeding and addition of AI(OH)3 had high concentration of Ca, Cr, Mo and B and a pH of greater than 12. The pH of the process water from FA treatment followed by gypsum seeding and addition of AI(OH)3 was reduced by reacting the process water with CO2 to 7.06. The process water from the carbonation process contained trace elements such as Cr, Mo and B above the DWAF effluent limit for domestic use. Carbonation of the process water reduced the water hardness from 5553 ppm to 317 ppm due to CaC03 precipitation, thereby reducing the Ca concentration from 2224 ppm to 126 ppm.
519

Fabrication of nanomaterials from biomass for adsorption and antimicrobial applications

Uche, Cosmas Chinedu January 2020 (has links)
Philosophiae Doctor - PhD / The Black soldier fly (BSF) is an environmentally friendly and sustainable insect utilised in the decomposition of organic waste. This is due to its voracious consumption capability, disruptive functions and economic importance. The sustained global increase in commercial BSF farming has resulted in an expanded waste generation from its carcases to which beneficial uses ought to be developed. This study focused on the beneficial use of the generated waste by extracting chitosan from waste pupae and commercially reared BSF adult carcases. The study also considered the conversion of the extracted chitosan to nanofibres and nanoparticles for application in adsorption of inorganic Pb2+ or Cd2+ and antimicrobial studies, respectively. To achieve the aim of this study, the optimal extraction conditions of chitin and chitosan from both pupal exuviae and adult BSF waste materials were attained after a series of experiments. The extraction process involved three stages which were demineralisation, deproteination and deacetylation. The extracted adult and pupal chitin and chitosan were characterised using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction studies (XRD), high resolution scanning electron microscopy (HRSEM) and solid-state carbon nuclear magnetic resonance spectroscopy (13C NMR). Additionally, the adult (ACH20_9) and pupal (PCH21_9) chitosan samples, due to their solubility, were further characterised to determine their molecular weight, fat and water binding capacities, solubility and ash contents. / 2021-09-30
520

Adsorption of organotin compounds on nano metal oxide/silica, activated carbon and fly ash composite materials

Ayanda, Olushola Sunday January 2013 (has links)
Thesis submitted in fulfilment of the requirements for the degree Doctor of Technology: Chemistry in the Faculty of Applied Sciences at the Cape Peninsula University of Technology 2013 / In this present study, the physicochemical properties, nature and morphology of prepared composite materials involving activated carbon, fly ash, nFe3O4, nSiO2 and nZnO in the 1:1 ratio for two components composite materials and 1:1:1 for three components composite materials were investigated. The nature, morphology and elemental characterizations of these materials were carried out by means of modern analytical methods such as scanning electron and transmission electron microscopy (SEM and TEM), x-ray diffraction (XRD), x-ray fluorescence (XRF), inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared spectroscopy (FTIR). Other physicochemical characterizations undertaken were CNH analysis, ash content, pH, point of zero charge and surface area and porosity determination by Brunauer, Emmett and Teller (BET). The precursors and composite materials were then applied to the sorption (remediation) of tributyltin (TBT) and triphenyltin (TPT) from artificial seawater and wastewater and the adsorption efficiencies for the precursors and the composites compared. The adsorption of TBT and TPT onto these materials as a function of adsorbent amount, contact time, pH, stirring speed, initial adsorbate concentration and temperature was investigated. Maximum organotin adsorption was recorded within the pH range of normal saline water (pH 8). Approximately 99.95 %, 95.75 %, 96.78 %, 99.88 %, 96.96 %, 99.98 %, 99.99 %, 99.99 % and 99.99 % TBT were removed from 25 mL of 100 mg/L TBT-contaminated artificial seawater using 0.5 g adsorbents at a contact time of 60 min, pH 8, stirring speed 200 rpm and temperature of 80 oC by activated carbon, fly ash, nFe3O4, nSiO2, nZnO, fly ash/activated carbon, nFe3O4/activated carbon, nSiO2/activated carbon and nZnO/activated carbon composite, respectively and the adsorption of TBT onto these adsorbents was endothermic. Approx. 99.99 %, 96.54 %, 95.50 %, 96.92 %, 97.14 %, 99.99 %, 98.44 %, 98.98 % and 99.66 % TPT were also removed from 25 mL of 100 mg/L TPT-contaminated artificial seawater using 0.5 g adsorbents at a contact time of 60 min, pH 8, stirring speed 200 rpm and a temperature of 20 oC by the activated carbon, fly ash, nFe3O4, nSiO2, nZnO, fly ash/activated carbon, nFe3O4/fly ash, nSiO2/fly ash and nZnO/fly ash composite, respectively. The adsorption of TPT onto activated carbon and fly ash/activated carbon composite from TPT – contaminated artificial seawater was endothermic while TPT adsorption onto fly ash, nFe3O4, nSiO2, nZnO, nFe3O4/fly ash, nSiO2/fly ash and nZnO/fly ash composites from TPT – contaminated artificial seawater was exothermic. The adsorption of TBT and TPT onto nFe3O4/fly ash/activated carbon and nSiO2/fly ash/activated carbon composites from TBT – and TPT – contaminated water, respectively were endothermic and approx. 99.98 % and 99.99 % of TBT and TPT, respectively were removed from the initial concentration of 100 mg/L OTC by the composites at a temperature of 80 oC, 60 min contact time, pH 8 and a stirring speed of 200 rpm. The adsorption kinetics of all the precursors and composite materials fitted well with the pseudo second-order kinetic model while the adsorption isotherm data could be well described by the Freundlich isotherm model except TBT adsorption onto nZnO/activated carbon and nFe3O4/activated carbon composite from TBT contaminated artificial seawater, TPT adsorption onto activated carbon and fly ash/activated carbon from TPT contaminated artificial seawater, and TPT sorption onto nSiO2/fly ash/activated carbon composite from TPT – contaminated water which could be described by both the Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Optimal conditions for the adsorption of TBT and TPT from artificial seawater were further applied to TBT and TPT removal from TBT – and TPT – contaminated natural seawater obtained from Cape Town harbour and the results obtained show that 99.71 %, 79.23 %, 80.11 %, 82.86 %, 80.42 %, 99.75 %, 99.88 %, 99.83 % and 99.88 % TBT were removed from TBT – contaminated natural seawater by activated carbon, fly ash, nFe3O4, nSiO2, nZnO, fly ash/activated carbon, nFe3O4/activated carbon, nSiO2/activated carbon and nZnO/activated carbon composite, respectively while 99.90 %, 96.44 %, 95.37 %, 96.75 %, 97.03 %, 99.92 %, 98.42 %, 98.92 % and 99.58 % TPT were removed from TPT – contaminated natural seawater by activated carbon, fly ash, nFe3O4, nSiO2, nZnO, fly ash/activated carbon, nFe3O4/fly ash, nSiO2/fly ash and nZnO/fly ash composite, respectively. Experimental results therefore show that the composite materials present higher organotin adsorption efficiency than the precursors due to the nature and improved properties of the composite materials and can therefore be utilized for the remediation of organotin contamination from industrial and/or shipyards process wastewater to > 99 % reduction before discharge into the environment.

Page generated in 0.0273 seconds