• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AN ONBOARD PROCESSOR FOR FLIGHT TEST DATA ACQUISITION SYSTEMS

Wegener, John A., Blase, Gordon A. 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Today’s flight test programs are experiencing increasing demands for a greater number of high-rate digital parameters, competition for spectrum space, and a need for operational flexibility in flight test instrumentation. These demands must be met while meeting schedule and budget constraints. To address these various needs, the Boeing Integrated Defense System (IDS) Flight Test Instrumentation group in St. Louis has developed an onboard processing capability for use with airborne instrumentation data collection systems. This includes a first-generation Onboard Processor (OBP) which has been successfully used on the F/A-18E/F Super Hornet flight test program for four years, and which provides a throughput of 5 Mbytes/s and a processing capability of 480 Mflops (floating-point operations per second). Boeing IDS Flight Test is also currently developing a second generation OBP which features greatly enhanced input and output flexibility and algorithm programmability, and is targeted to provide a throughput of 160 Mbytes/s with a processing capability of 16 Gflops. This paper describes these onboard processing capabilities and their benefits.
2

Onboard Orbit Determination Using GPS Measurements for Low Earth Orbit Satellites

Zhou, Ning January 2005 (has links)
Recent advances in spaceborne GPS technology have shown significant advantages in many aspects over conventional technologies. For instance, spaceborne GPS can realize autonomous orbit determination with significant savings in spacecraft life cycle, in power, and in mass. At present, the onboard orbit determination in real time or near-real time can typically achieve 3D orbital accuracy of metres to tens metres with Kalman filtering process, but 21st century space engineering requires onboard orbit accuracy of better than 5 metres, and even sub-metre for some space applications. The research focuses on the development of GPS-based autonomous orbit determination techniques for spacecraft. Contributions are made to the field of GPS-based orbit determination in the following five areas: Techniques to simplify the orbital dynamical models for onboard processing have been developed in order to reduce the computional burden while retaining full model accuracy. The Earth gravity acceleration approximation method was established to replace the traditional recursive acceleration computations. Results have demonstrated that with the computation burden for a 55× spherical harmonic gravity model, we achieve the accuracy of a 7070× model. Efforts were made for the simplification of solar & lunar ephemerides, atmosphere density model and orbit integration. All these techniques together enable a more accurate orbit integrator to operate onboard. Efficient algorithms for onboard GPS measurement outlier detection and measurement improvement have been developed. In addition, a closed-form single point position method was implemented to provide an initial orbit solution without any a priori information. The third important contribution was made to the development of sliding-window short-arc orbit filtering techniques for onboard processing. With respect to the existing Kalman recursive filtering, the short-arc method is more stable because more measurements are used. On the other hand, the short-arc method requires less accurate orbit dynamical model information compared to the long-arc method, thus it is suitable for onboard processing. Our results have demonstrated that by using the 1 ~ 2 revolutions of LEO code GPS data we can achieve an orbit accuracy of 1 ~ 2 metres. Sliding-window techniques provide sub-metre level orbit determination solutions with 5~20 minutes delay. A software platform for the GPS orbit determination studies has been established. Methods of orbit determination in near-real time have been developed and tested. The software system includes orbit dynamical modelling, GPS data processing, orbit filtering and result analysis modules, providing an effective technical basis for further studies. Furthermore a ground-based near-real time orbit determination system has been established for FedSat, Australia's first satellite in 30 years. The system generates 10-metre level orbit solution with half-day latency on an operational basis. This system has supported the scientific missions of FedSat such as Ka-band tracking and GPS atmosphere studies within the Cooperative Research Centre for Satellite System (CRCSS) community. Though it is different from the onboard orbit determination, it provides important test-bed for the techniques described in previous section. This thesis focuses on the onboard orbit determination techniques that were discussed in Chapter 2 through Chapter 6. The proposed onboard orbit determination algorithms were successfully validated using real onboard GPS data collected from Topex/Poseidon, CHAMP and SAC-C satellites.
3

Improving Dependability of Space-Cloud Payload Processor by Storage System

Said, Hassan, Johansson, Stephanie Liza January 2023 (has links)
Due to the usage of complicated platforms and current high-performance space computing technology, onboard processing in small satellites is expanding. Space-cloud payload processors with Commercial Off-The-Shelf (COTS) components, that are required to be radiation-tolerant, are used to perform the onboard processing. In this thesis, the research will aim to increase the dependability of a generic space-cloud payload processor through its Solid State Drive (SSD) storage unit. To achieve this, a more dependable NAND-flash-based SSD Redundant Array of Independent Disc (RAID) storage system is designed and tested. The reliability of NAND-flash-based SSDs can suffer wear-outs due to increased Program/Erase (P/E) cycles, making them more prone to radiation effects. These radiation effects are considered non-destructive events in the form of bit errors (both single bit-flip and multiple bit-flips). Therefore, making the storage system more dependable involves increasing its reliability against non-destructive events and developing analytical models that account for the considered dynamic of the SSD RAID. The challenge that comes with achieving the aim of this thesis is twofold. First, to explore different RAID levels such that a combination of RAID levels can be incorporated into one SSD for better reliability than a RAID-1 setup. Hence, in this thesis, a RAID array of several SSDs is not considered. Furthermore, the combinations of RAID levels need to account for mixed-critical data. Second, to demonstrate, via simulation and analytical models, the impact on the reliability of the storage system. A comparison study is also undertaken due to the support that the Fourth Extended (Ext4) file system or Zettabyte File System (ZFS) may give to enhance the storage system, and since little research exists that compares the file systems in some feature categories. The solution is a RAID-5 + 6 storage system that is Error Detection And Correction (EDAC) protected by Hamming codes and Reed Solomon (RS) codes. Low-critical data is stored using RAID-5 whereas high-critical data is stored using RAID-6. The simulation of the storage system proves that low-critical stripes of data achieve single fault tolerance whereas high-critical stripes of data tolerate a maximum of 5-bit burst errors. In parallel, several Continuous Time Markov Chain (CTMC) models are analysed, which show that the proposed solution is indeed highly reliable. The comparison study is carried out in a systematic way, and the findings are established as substantial,i.e., ZFS provides greater storage system support. In summary, the results of creating the storage system and analysing it suggest that incorporating RAID-5 and RAID-6 offers better SSD RAID reliability than RAID-1. / Användningen av komplicerade plattformar och aktuell högpresterande rymdberäkningsteknik expanderar onboard-processing i små satelliter. Space-Cloud lösningar med kommersiellt tillgängliga komponenter som är toleranta mot strålningar i rymden används för att utföra onboard-processing. I detta examensarbete syftar forskningen till att förbättra tillförlitligheten hos en generisk rymd dator genom dess SSD-lagringsenhet. För att uppnå detta har ett mer tillförlitligt lagringssystem bestående av NAND-flash och RAID designats och testats. Tillförlitligheten hos NAND-flash-baserade SSD:er kan försämras då dessa kan drabbas av slitage på grund av ökade P/E cykler, vilket gör dem mer benägna för strålningseffekter. Dessa strålningseffekter anses vara icke-destruktiva i form av bit-fel (både enskilda bit-flippar och flera bit-flippar). Med denna anledning görs lagringssystemet mer tillförlitligt för att tolerera icke-destruktiva händelser. Utöver detta, utvecklas analytiska modeller som tar hänsyn till den betraktade dynamiken i SSD RAID. Utmaningen som följer med att uppnå syftet med denna avhandling är tvådelad. För det första, för att utforska olika RAID-nivåer så att en kombination av RAID-nivåer kan inkorporeras i en SSD för bättre tillförlitlighet än RAID-1. Således övervägs inte en RAID-array av flera SSD:er i denna avhandling. Dessutom måste kombinationerna av RAID-nivåer ta hänsyn till data av olika kritikalitet. För det andra, för att genom simulering och analytiska modeller indikera påverkan på lagringssystemets tillförlitlighet. En jämförelsestudie genomförs också på grund av stödet som filsystemen Ext4 eller ZFS kan ge för att förbättra lagringssystemet och eftersom det finns lite forskning som jämför filsystemen i några funktionella kategorier. Lösningen baseras på ett RAID-5+6 lagringssystem som är skyddat av Hamming-koder och RS koder för att upptäcka fel och korrigera dem. Lågkritisk data lagras med RAID-5 medan högkritisk data lagras med RAID-6. Simuleringen av lagringssystemet visar att lågkritiska datasektioner uppnår en fel tolerans mot enskilda bit-flippar medan högkritiska datasektioner kan tåla maximalt 5 bit-flippar. Samtidigt analyseras flera CTMC modeller som visar att den föreslagna lösningen verkligen är mycket tillförlitlig. Jämförelsestudien utförs på ett systematiskt sätt och resultaten fastställs som betydande, det vill säga att ZFS ger större stöd för lagringssystemet. Sammanfattningsvis antyder resultaten av att skapa lagringssystemet och analysera det att inkorporering av RAID-5 och RAID-6 erbjuder bättre tillförlitlighet för SSD RAID än RAID-1.

Page generated in 0.1019 seconds