Spelling suggestions: "subject:"keyshot control"" "subject:"eyeshot control""
1 |
Determining One-Shot Control Criteria in Western North American Power Grid with Swarm OptimizationVaughan, Gregory AE 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The power transmission network is stretched thin in Western North America. When
generators or substations fault, the resultant cascading failures can diminish transmission capabilities across wide regions of the continent. This thesis examined several methods of determining one-shot controls based on frequency decline in electrical generators to reduce the effect of one or more phase faults and tripped generators. These methods included criteria based on indices calculated from frequency measured at the controller location. These indices included criteria based on local modes and the rate of change of frequency.
This thesis primarily used particle swarm optimization (PSO) with inertia to determine
a well-adapted set of parameters. The parameters included up to three thresholds for indices calculated from frequency. The researchers found that the best method for distinguishing between one or more phase faults used thresholds on two Fourier indices. Future lines of research regarding one-shot controls were considered.
A method that distinguished nearby tripped generators from one or more phase faults
and load change events was proposed. This method used a moving average, a negative
threshold for control, and a positive threshold to reject control. The negative threshold
for the moving average is met frequently during any large transient event. An additional
index must be used to distinguish loss of generation events. This index is the maximum
value of the moving average up to the present time and it is good for distinguishing loss of generation events from transient swings caused by other events.
This thesis further demonstrated how well a combination of controls based on both rate
of change of frequency and local modes reduces instability of the network as determined
by both a reduction in RMSGA and control efficiency at any time after the events.
This thesis found that using local modes is generally useful to diagnose and apply one-shot controls when instability is caused by one or more phase faults, while when disconnected generators or reduced loads cause instability in the system, the local modes did not distinguish between loss of generation capacity events and reduced load events. Instead, differentiating based on the rate of change of frequency and an initial upward deflection of frequency or an initial downward deflection of frequency did distinguish between these types of events.
|
2 |
Determining One-Shot Control Criteria in Western North American Power Grid with Swarm OptimizationGregory Vaughan (6615489) 10 June 2019 (has links)
The power transmission network is stretched thin in Western North America. When generators or substations fault, the resultant cascading failures can diminish transmission capabilities across wide regions of the continent. This thesis examined several methods of<br><div>determining one-shot controls based on frequency decline in electrical generators to reduce the effect of one or more phase faults and tripped generators. These methods included criteria based on indices calculated from frequency measured at the controller location. These indices included criteria based on local modes and the rate of change of frequency.</div><br>This thesis primarily used particle swarm optimization (PSO) with inertia to determine a well-adapted set of parameters. The parameters included up to three thresholds for indices calculated from frequency. The researchers found that the best method for distinguishing between one or more phase faults used thresholds on two Fourier indices. Future lines of research regarding one-shot controls were considered.<br><div><br></div><div>A method that distinguished nearby tripped generators from one or more phase faults and load change events was proposed. This method used a moving average, a negative<br></div>threshold for control, and a positive threshold to reject control. The negative threshold for the moving average is met frequently during any large transient event. An additional index must be used to distinguish loss of generation events. This index is the maximum value of the moving average up to the present time and it is good for distinguishing loss of<br>generation events from transient swings caused by other events.<br><br><div>This thesis further demonstrated how well a combination of controls based on both rate of change of frequency and local modes reduces instability of the network as determined by both a reduction in RMSGA and control efficiency at any time after the events.</div><br>This thesis found that using local modes is generally useful to diagnose and apply one-shot controls when instability is caused by one or more phase faults, while when disconnected generators or reduced loads cause instability in the system, the local modes did not distinguish between loss of generation capacity events and reduced load events. Instead, differentiating based on the rate of change of frequency and an initial upward deflection of frequency or an initial downward deflection of frequency did distinguish between these types of events.
|
3 |
Methods of Handling Missing Data in One Shot Response Based Power System ControlDahal, Niraj 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The thesis extends the work done in [1] [2] by Rovnyak, et al. where the authors have described about transient event prediction and response based one shot control using decision trees trained and tested in a 176 bus model of WECC power system network. This thesis contains results from rigorous simulations performed to measure robustness of the existing one shot control subjected to missing PMU's data ranging from 0-10%.
We can divide the thesis into two parts in which the first part includes understanding of the work done in [2] using another set of one-shot control combinations labelled as CC2 and the second part includes measuring their robustness while assuming missing PMU's data.
Previous work from [2] involves use of decision trees for event detection based on different indices to classify a contingency as a 'Fault' or 'No fault' and another set of
decision trees that decides either to actuate 'Control' or 'No control'. The actuation of control here means application of one-shot control combination to possibly bring the system to a new equilibrium point which would otherwise attain loss of synchronism.
The work done in [2] also includes assessing performance of the one shot control without event detection.
The thesis is organized as follows-
Chapter 1 of the thesis highlights the effect of missing PMUs' data in a power system network and the need to address them appropriately. It also provides a general
idea of transient stability and response of a transient fault in a power system.
Chapter 2 forms the foundation of the thesis as it describes the work done in [1] [2] in detail. It describes the power system model used, contingencies set, and different indices used for decision trees. It also describes about the one shot control combination (CC1) deduced by Rovnyak, et.al. of which performance is later tested in this thesis assuming different missing data scenarios. In addition to CC1, the
chapter also describes another set of control combination (CC2) whose performance is also tested assuming the same missing data scenarios. This chapter also explains about the control methodology used in [2]. Finally the performance metrics of the DTs are explained at the end of the chapter. These are the same performance metrics used in [2] to measure the robustness of the one shot control. Chapter 2 is thus more a literature review of previous work plus inclusion of few simulation results obtained from CC2 using exactly the same model and same control methodology.
Chapter 3 describes different techniques of handling missing data from PMUs most of which have been used in and referred from different previous papers. Finally Chapter 4 presents the results and analysis of the simulation. The thesis is wrapped up explaining future enhancements and room for improvements.
|
Page generated in 0.0504 seconds