Spelling suggestions: "subject:"antology verification"" "subject:"dantology verification""
1 |
Semantic Integration of Time OntologiesOng, Darren 15 December 2011 (has links)
Here we consider the verification and semantic integration for the set of first-order time ontologies by Allen-Hayes, Ladkin, and van Benthem that axiomatize time as points, intervals, or a combination of both within an ontology repository environment. Semantic integration of the set of time ontologies is explored via the notion of theory interpretations using an automated reasoner as part of the methodology. We use the notion of representation theorems for verification by characterizing the models of the ontology up to isomorphism and proving that they are equivalent to the intended structures for the ontology. Provided is a complete account of the meta-theoretic relationships between ontologies along with corrections to their axioms, translation definitions, proof of representation theorems, and a discussion of various issues such as class-quantified interpretations, the impact of namespacing support for Common Logic, and ontology repository support for semantic integration as related to the time ontologies examined.
|
2 |
Semantic Integration of Time OntologiesOng, Darren 15 December 2011 (has links)
Here we consider the verification and semantic integration for the set of first-order time ontologies by Allen-Hayes, Ladkin, and van Benthem that axiomatize time as points, intervals, or a combination of both within an ontology repository environment. Semantic integration of the set of time ontologies is explored via the notion of theory interpretations using an automated reasoner as part of the methodology. We use the notion of representation theorems for verification by characterizing the models of the ontology up to isomorphism and proving that they are equivalent to the intended structures for the ontology. Provided is a complete account of the meta-theoretic relationships between ontologies along with corrections to their axioms, translation definitions, proof of representation theorems, and a discussion of various issues such as class-quantified interpretations, the impact of namespacing support for Common Logic, and ontology repository support for semantic integration as related to the time ontologies examined.
|
3 |
Semantic knowledge extraction from relational databasesMogotlane, Kgotatso Desmond 05 1900 (has links)
M. Tech. (Information Technology, Department of Information and Communications Technology, Faculty of Applied an Computer Sciences), Vaal University of Technolog / One of the main research topics in Semantic Web is the semantic extraction of knowledge
stored in relational databases through ontologies. This is because ontologies are core
components of the Semantic Web. Therefore, several tools, algorithms and frameworks are being developed to enable the automatic conversion of relational databases into ontologies.
Ontologies produced with these tools, algorithms and frameworks needs to be valid and
competent for them to be useful in Semantic Web applications within the target knowledge domains. However, the main challenges are that many existing automatic ontology construction tools, algorithms, and frameworks fail to address the issue of ontology verification and ontology competency evaluation. This study investigates possible solutions to these challenges. The study began with a literature review in the semantic web field. The review let to the conceptualisation of a framework for semantic knowledge extraction to deal with the abovementioned challenges. The proposed framework had to be evaluated in a real life knowledge domain. Therefore, a knowledge domain was chosen as a case study. The data was collected and the business rules of the domain analysed to develop a relational data model. The data model was further implemented into a test relational database using Oracle RDBMS. Thereafter, Protégé plugins were applied to automatically construct ontologies from the relational database. The resulting ontologies are further validated to match their structures against existing conceptual database-to-ontology mapping principles. The matching results show the performance and accuracy of Protégé plugins in automatically converting relational databases into ontologies. Finally, the study evaluated the resulting ontologies against the requirements of the knowledge domain. The requirements of the domain are modelled with competency questions (CQs) and mapped to the ontology using SPARQL queries design, execution and analysis against users’ views of CQs answers. Experiments show that, although users have different views of the answers to CQs, the execution of the SPARQL translations of CQs against the ontology does produce outputs instances that satisfy users’ expectations. This indicates that Protégé plugins generated ontology from relational database embodies domain and semantic features to be useful in Semantic Web applications.
|
Page generated in 0.1226 seconds