• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microstructure et macro-comportement acoustique : approche par reconstruction d'une cellule élémentaire représentative

Perrot, Camille January 2006 (has links)
The fundamental issue of determining acoustic properties of porous media from their local geometry is examined in this PhD dissertation thesis, thanks to a sample of open-cell aluminum foam analyzed by axial computed microtomography. Various geometric properties are measured to characterize the experimental sample at the cell size level. This is done in order to reconstruct a porous medium by means of idealized three- and two- dimensional unit-cells.The frequency dependant thermal and velocity fields governing the propagation and dissipation of acoustic waves through rigid porous media are computed by Brownian motion simulation and the finite element method, respectively. Macroscopic behavior is derived by spatial averaging of the local fields. Our results are compared to experimental data obtained from impedance tube measurements. Firstly, this approach leads to the identification of the macroscopic parameters involved in Pride and Lafarge semiphenomenological models. Secondly, it yields a direct access to thermal and viscous dynamic permeabilities. However, the bi-dimensional model underestimates the static viscous permeability as well as the viscous characteristic length; what thus require a three-dimensional implementation.
2

Wet steam drying: Microwave-assisted droplet evaporation in open-cell ceramic foams

Camacho Hernandez, Jesus Nain 13 December 2023 (has links)
In many energy and process engineering systems where fluids are processed, droplet-laden gas flows may occur. As droplets are often detrimental to the system’s operation, they are required to be removed. According to the state-of-the-art, industrial droplet removal is achieved through a sequential arrangement of several separators followed by droplet collection and discharge. This results in a high-quality gas stream, yet at the expense of bulky and expensive systems that are difficult to retrofit to existing facilities. In addition, the multiple sequential separators produce high pressure drops, further increasing operating costs. Alternatively, a single droplet separation stage and in situ evaporation would provide compact solutions for facilities. However, compact engineering solutions for the removal of entrained droplets are difficult to achieve with conventional flow control and conduction heat transfer approaches such as Joule heating. Joule heating requires a well-defined and homogeneous electrical resistance to ensure uniform heating, which is technically challenging to apply in fine separators and thus compact removal devices are hence often costly and ineffective. Therefore, it becomes necessary to investigate alternative heating approaches to overcome these challenges, such as volumetric heating using microwaves. The research conducted in this thesis aims to analyze the potential of a compact microwave solution approach for droplet removal. The compactness of the approach relies on a novel fine separator structure enhanced by microwave-heat transfer for efficient in-flow droplet evaporation. The investigation targets at fundamental studies of the combined effect of droplet flow filtering and heat transfer from numerical calculations and experimentation. As novel fine separators, solid open-cell foams are a promising alternative for the separation of liquid droplets suspended in gas flows at comparably low pressure drops. Using susceptors, such as dielectric materials, for the skeleton and exposing them to microwaves is an efficient way to use them as heating elements. Silicon carbide (SiC) based open-cell foam samples were considered for the study as they are good susceptor materials. First, pore-scale fluid numerical simulations on representative foam models were used to obtain a deeper insight into the effects of pore size and pore density on the droplet retention time within foams. Numerical findings were reported considering the pressure gradient and the residence time distribution of droplets under different superficial flow velocities, droplet sizes, porosities and pore densities. Next, the temperature-dependent permittivity of SiC-based foam materials was determined by the cavity perturbation technique using a waveguide resonator at a microwave frequency of 2.45 GHz up to 200 °C. The permittivity was of particular interest as it is a crucial parameter for predicting and designing systems utilizing microwave heating. Along the permittivity measurements, electromagnetic wave propagation simulations were used to derive novel mixing relations describing the effective permittivity of foams while considering their skeletal morphology. The derived relations facilitate an efficient and reliable estimation of the effective permittivity of open-cell foams, producing good agreement to experimental data. Using the foams dielectric properties and the fluid characteristics of droplet-laden streams, a microwave applicator was designed to concentrate the electric field on the open-cell foams. The applicator was constructed for carrying out experimental studies on droplet evaporation removal under different flow velocities, microwave power and different SiC-based foams. Measurements of droplet size, velocity, number density and flux at the inlet and outlet streams of the applicator were performed using a 2D-phase Doppler interferometer. Eventually, it was found from the experimental data analysis that the application of open-cell ceramic foams as a filter medium reduced 99.9 % of the volumetric flow of droplets, while additional microwave exposure increased the reduction to 99.99 %. In addition, microwave-heated foams prevent droplet re-entrainment and structure-borne liquid accumulation within foams, thus avoiding water clogging and flooding. Hence, open-cell foams can be used as fine droplet separators as long as microwave heating may effectively evaporate accumulations of liquid. An important factor in designing future devices based on this microwave heating approach is the temperature, as it changes the arcing breakdown voltage of the gas, thus limiting the microwave input power and droplet flow velocity. Although more investigations are needed to develop an applicable and optimal product, the results presented in this thesis provide a first insight into the viability of using microwave heating and fine filtering as a compact solution for droplet removal.
3

Innovating microstructured gas-liquid-solid reactors : a contribution to the understanding of hydrodynamics and mass transfers

Tourvieille, Jean-Noël 26 February 2014 (has links) (PDF)
To meet the new challenges of the chemical indutries, the developpement of new heterogeneous catalytic reactors and their understanding are mandatory. From these perspectives, new reactor designs based on structuring at micro or millimeter scales have emerged. They have sparked interest for their ability to decrease physical limitations for heat and mass transfers. Thus, two advanced reactor technologies for gas-liquid-solid catalysed reactions are studied. The first reactor is a micro-structured falling film (FFMR) in which vertical sub millimetric grooves are etched and coated with a catalyst. This structuration allows stabilizing the gas-liquid interface of a down flow liquid phase. A thin liquid film is generated leading to high specific surface areas. Commercially available, it represents a very good potential for performing demanding reactions (i.e.fast, exothermic) for small scale productions such as pharmaceuticals. In a second part, a new reactor concept is proposed. Open cell foams are used as catalyst support and inserted in a milli-square channel. The reactor is then submitted to a preformed gas-liquid Taylor flow. In both cases, hydrodynamics features are studied by using microscopy based methods. Their potential in terms of mass transfers are also studied by performing catalyzed α-methylstyren hydrogenation. For both reactors, it comes out that the particular flow induced by micro or milli structures leads to at least one order of magnitude higher mass transfers performances than mutliphase reactors currently used in the industry albeit it remains to be demonstrated at such scale. From all these studies, correlations, models and methods for chemical engineers (hydrodynamics, pressure drops, mass transfer) are proposed for the two reactors
4

Innovating microstructured gas-liquid-solid reactors : a contribution to the understanding of hydrodynamics and mass transfers / Réacteurs gaz-liquide-solides innovants : contribution à la compréhension de l'hydrodynamique et des transferts de masses

Tourvieille, Jean-Noël 26 February 2014 (has links)
Afin de répondre aux nouveaux challenges de l'industrie chimique, le développement de nouveaux réacteurs catalytiques hétérogènes plus efficaces et plus sûrs ainsi que leur compréhension sont nécessaires. Dans cette optique, des réacteurs micro ou milli-structurés ont vu le jour et suscitent un intérêt croissant de par leur capacité à diminuer les phénomènes physiques de limitations aux transferts de mantière et de chaleur. Dans ce travail, deux concepts de réacteurs structurés dédiés au milieu gaz-liquide solide sont étudiés. Le premier est un réacteur à film tombant microstructuré (FFMR) dans lequel des canaux sub-millimétriques, rectilignes et verticaux permettent de stabiliser et d'amincir un film liquide en écoulement, générant des aires d'interfaces très importantes. Disponible commercialement, il présente un très bon potentiel pour la mise en oeuvre de réactions à fortes contraintes mais pour de petites productions. Le second réacteur est quant à lui nouveau. Des mousses à cellules ouvertes métalliques sont utilisées comme support de catalyseur structurant confiné dans un canal de section millimétrique carrée et soumis à un écoulement de Taylor G-L préformé. Pour chaque réacteur, l'hydrodynamique des écoulements est étudiée par le développement de techniques microscopiques et leurs aptitudes aux transferts de masses sont évaluées par la mise en oeuvre de la réaction catalytique d'hydrogénation de l'α-methylstyrène. Il en ressort que les écoulements particuliers rencontrés dans ces deux objets permettent d'atteindre des capacités de transferts de matières supérieurs d'au moins un ordre de grandeur aux technologies usuelles pour un coût énergétique, lié à l'écoulements des fluides, faible. Par ailleurs, des éléments de dimensionnement (hydrodynamique, perte de charge et transferts de matière) ont été construits pour les deux réacteurs / To meet the new challenges of the chemical indutries, the developpement of new heterogeneous catalytic reactors and their understanding are mandatory. From these perspectives, new reactor designs based on structuring at micro or millimeter scales have emerged. They have sparked interest for their ability to decrease physical limitations for heat and mass transfers. Thus, two advanced reactor technologies for gas-liquid-solid catalysed reactions are studied. The first reactor is a micro-structured falling film (FFMR) in which vertical sub millimetric grooves are etched and coated with a catalyst. This structuration allows stabilizing the gas-liquid interface of a down flow liquid phase. A thin liquid film is generated leading to high specific surface areas. Commercially available, it represents a very good potential for performing demanding reactions (i.e.fast, exothermic) for small scale productions such as pharmaceuticals. In a second part, a new reactor concept is proposed. Open cell foams are used as catalyst support and inserted in a milli-square channel. The reactor is then submitted to a preformed gas-liquid Taylor flow. In both cases, hydrodynamics features are studied by using microscopy based methods. Their potential in terms of mass transfers are also studied by performing catalyzed α-methylstyren hydrogenation. For both reactors, it comes out that the particular flow induced by micro or milli structures leads to at least one order of magnitude higher mass transfers performances than mutliphase reactors currently used in the industry albeit it remains to be demonstrated at such scale. From all these studies, correlations, models and methods for chemical engineers (hydrodynamics, pressure drops, mass transfer) are proposed for the two reactors
5

Forced convective heat transfer through open cell foams

Vijay, Dig 15 June 2017 (has links) (PDF)
The purpose of this study is to investigate forced convection of air through open cell foams. It can be numerically investigated either by implementing the time efficient macroscopic models or computationally expensive microscopic models. However, during the course of this study, it was observed that the macroscopic models are not sufficient for determining the desired key parameters. Nevertheless, it is still possible that these macroscopic models can be used to design an application accurately with minimum time efforts if the concerned key parameters are already known through other means. Accordingly, in this work, a methodology is developed to determine the desired key parameters by implementing the microscopic models, which are further used into the macroscopic models for designing different applications. To validate the proposed methodology, a set of steady state and transient forced convection experiments were performed for a set of ceramic foams having different pore diameter (10−30 PPI) and porosity (0.79−0.87) for a superficial velocity in the range of 0.5−10 m/s.
6

Forced convective heat transfer through open cell foams

Vijay, Dig 26 August 2016 (has links)
The purpose of this study is to investigate forced convection of air through open cell foams. It can be numerically investigated either by implementing the time efficient macroscopic models or computationally expensive microscopic models. However, during the course of this study, it was observed that the macroscopic models are not sufficient for determining the desired key parameters. Nevertheless, it is still possible that these macroscopic models can be used to design an application accurately with minimum time efforts if the concerned key parameters are already known through other means. Accordingly, in this work, a methodology is developed to determine the desired key parameters by implementing the microscopic models, which are further used into the macroscopic models for designing different applications. To validate the proposed methodology, a set of steady state and transient forced convection experiments were performed for a set of ceramic foams having different pore diameter (10−30 PPI) and porosity (0.79−0.87) for a superficial velocity in the range of 0.5−10 m/s.

Page generated in 0.0993 seconds