1 |
Lattice-Boltzmann coupled models for advection-diffusion flow on a wide range of Péclet numbersDapelo, Davide, Simonis, S., Krause, J.J., Bridgeman, John 18 April 2021 (has links)
Yes / Traditional Lattice-Boltzmann modelling of advection–diffusion flow is affected by numerical instability if the advective term becomes dominant over the diffusive (i.e., high-Péclet flow). To overcome the problem, two 3D one-way coupled models are proposed. In a traditional model, a Lattice-Boltzmann Navier–Stokes solver is coupled to a Lattice-Boltzmann advection–diffusion model. In a novel model, the Lattice-Boltzmann Navier–Stokes solver is coupled to an explicit finite-difference algorithm for advection–diffusion. The finite-difference algorithm also includes a novel approach to mitigate the numerical diffusivity connected with the upwind differentiation scheme.
|
2 |
The application of Buckingham π theorem to Lattice-Boltzmann modelling of sewage sludge digestionDapelo, Davide, Trunk, R., Krause, M.J., Cassidy, N., Bridgeman, John 25 November 2020 (has links)
Yes / For the first time, a set of Lattice-Boltzmann two-way coupling pointwise Euler-Lagrange models is applied to gas mixing of sludge for anaerobic digestion. The set comprises a local model, a “first-neighbour” (viz., back-coupling occurs to the voxel where a particle sits, plus its first neighbours) and a “smoothing-kernel” (forward- and back-coupling occur through a smoothed-kernel averaging procedure). Laboratory-scale tests display grid-independence problems due to bubble diameter being larger than voxel size, thereby breaking the pointwise Euler-Lagrange assumption of negligible particle size. To tackle this problem and thereby have grid-independent results, a novel data-scaling approach to pointwise Euler-Lagrange grid independence evaluation, based on an application of the Buckingham π theorem, is proposed. Evaluation of laboratory-scale flow patterns and comparison to experimental data show only marginal differences in between the models, and between numerical modelling and experimental data. Pilot-scale simulations show that all the models produce grid-independent, coherent data if the Euler-Lagrange assumption of negligible (or at least, small) particle size is recovered. In both cases, a second-order convergence was achieved. A discussion follows on the opportunity of applying the proposed data-scaling approach rather than the smoothing-kernel model.
|
3 |
OpenLB-Open source lattice Boltzmann codeKrause, M.J., Kummerländer, A., Avis, S.J., Kusumaatmaja, H., Dapelo, Davide, Klemens, F., Gaedtke, M., Hafen, N., Mink, A., Marquardt, J.E., Maier, M.-L., Haussmann, M., Simonis, S. 25 November 2020 (has links)
Yes / We present the OpenLB package, a C++ library providing a flexible framework for lattice Boltzmann simulations. The code is publicly available and published under GNU GPLv2, which allows for adaption and implementation of additional models. The extensibility benefits from a modular code structure achieved e.g. by utilizing template meta-programming. The package covers various methodical approaches and is applicable to a wide range of transport problems (e.g. fluid, particulate and thermal flows). The built-in processing of the STL file format furthermore allows for the simple setup of simulations in complex geometries. The utilization of MPI as well as OpenMP parallelism enables the user to perform those simulations on large-scale computing clusters. It requires a minimal amount of dependencies and includes several benchmark cases and examples. The package presented here aims at providing an open access platform for both, applicants and developers, from academia as well as industry, which facilitates the extension of previous implementations and results to novel fields of application for lattice Boltzmann methods. OpenLB was tested and validated over several code reviews and publications. This paper summarizes the findings and gives a brief introduction to the underlying concepts as well as the design of the parallel data structure.
|
4 |
Towards Lattice-Boltzmann modelling of unconfined gas mixing in anaerobic digestionDapelo, Davide, Trunk, R., Krause, M.J., Bridgeman, John 18 December 2018 (has links)
Yes / A novel Lattice-Boltzmann model to simulate gas mixing in anaerobic digestion is developed and described. For the first time, Euler–Lagrange multiphase, non-Newtonian and turbulence modelling are applied jontly with a novel hybrid boundary condition. The model is validated in a laboratory-scale framework and flow patterns are assessed through Particle Imaging Velocimetry (PIV) and innovative Positron-Emission Particle Tracking (PEPT). The model is shown to reproduce the experimental flow patterns with fidelity in both qualitative and quantitative terms.
The model opens up a new approach to computational modelling of the complex multiphase flow in anaerobic digesters and offers specific advantages, such as computational efficiency, over an analogous Euler-Lagrange finite-volume computational fluid dynamics approach. / UK EPSRC Grant (EP/R01485X/1, Computational Methods for Anaerobic Digestion Optimization, “CoMAnDO”). The numerical work was performed in the HPC Cirrus EPSRC Tier-2 National HPC Facility, Edinburgh, UK, under a UK EPSRC Tier-2 Research Allocation Panel (RAP) award.
|
Page generated in 0.0253 seconds