Spelling suggestions: "subject:"operadores dde evolução"" "subject:"operadores dee evolução""
1 |
Existência de soluções periódicas para equações diferenciais do tipo neutro / Existence of periodic solutions for differential equations of neutral typeRabelo, Marcos Napoleão 05 October 2007 (has links)
Neste trabalho estudaremos a existência de soluções fracas, pseudo quase periódicas e periódicas, para uma classe de sistemas não autônomo do tipo neutro com retardamento não limitado modelados na forma \' d SUP. dt\' (u(t) + F(t, ut)) = A(t)u(t) + G(t, \'u IND.t\' ), t \'PERTENCE A\' (0, a), \'u IND. 0\' = \'varphi\' \'PERTENCE A\' B, onde {A(t)} ´e uma família de operadores lineares fechados, com um dom´?nio comum D =D(A(t)), a história ut : (-\'INFINITO\'1, 0] \'SETA\' X, \'u IND. t\'(THETA) = u(t+\'THETA\'), pertence a um espaço de fase abstrato B definido axiomaticamente e F,G : [0, a] × B \'SETA\' X são funções apropriadas. Para obter alguns de nossos resultados, precisaremos usar as propriedades da família de operadores de evolução (U(t, s))\'t > OU=\'s, para o sistema u? (t) - A(t)u(t) = 0, t \'Pertencer A\' (0, a), \'u IND.0\' = \'phi\', onde U(t, s) ´e uma fam´?lia de operadores lineares limitados em X / In this work we study the existence of mild, pseudo almost-periodic and periodic solution, concepts introduced be later for a class of abstract neutral functional systems with unbounded delay in the form \'d SUP dt\' (u(t) + F(t, \'u IND.t\')) = A(t)u(t) + G(t, \'u IND. t\'), t IT BELONGS\' (0, a), \'u IND.0\' = \'varphi\' \'IT BELONGS\' , where is a family of closed linear operator in a Banach space X, with a common domain D = D(A(t)), t \'IT BELONGS\' R, densely defined in X; the history \'u IND. t\' : (-\'THE infinite\', 0] \' ARROW\' X, ut(\'THETA\') = x(t+\'THETA\'), belongs to some abstract phase space B defined axiomatically and F,G : I ×B \'ARROW\' X are appropriate functions and I is a bounded or unbounded interval in R. To establish some of our results, we will use the properties of a systems of evolution (U(t, s))\' t IND. > OR =\'s, for a system in the form u? (t) - A(t)u(t) = 0, t \'IT BELONGS\' (0, a), \'u IND.0\' = \'PHI\', where (U(t, s))\'t IND. > 0R =\'s is a family of bounded linear operators on X
|
2 |
Existência de soluções periódicas para equações diferenciais do tipo neutro / Existence of periodic solutions for differential equations of neutral typeMarcos Napoleão Rabelo 05 October 2007 (has links)
Neste trabalho estudaremos a existência de soluções fracas, pseudo quase periódicas e periódicas, para uma classe de sistemas não autônomo do tipo neutro com retardamento não limitado modelados na forma \' d SUP. dt\' (u(t) + F(t, ut)) = A(t)u(t) + G(t, \'u IND.t\' ), t \'PERTENCE A\' (0, a), \'u IND. 0\' = \'varphi\' \'PERTENCE A\' B, onde {A(t)} ´e uma família de operadores lineares fechados, com um dom´?nio comum D =D(A(t)), a história ut : (-\'INFINITO\'1, 0] \'SETA\' X, \'u IND. t\'(THETA) = u(t+\'THETA\'), pertence a um espaço de fase abstrato B definido axiomaticamente e F,G : [0, a] × B \'SETA\' X são funções apropriadas. Para obter alguns de nossos resultados, precisaremos usar as propriedades da família de operadores de evolução (U(t, s))\'t > OU=\'s, para o sistema u? (t) - A(t)u(t) = 0, t \'Pertencer A\' (0, a), \'u IND.0\' = \'phi\', onde U(t, s) ´e uma fam´?lia de operadores lineares limitados em X / In this work we study the existence of mild, pseudo almost-periodic and periodic solution, concepts introduced be later for a class of abstract neutral functional systems with unbounded delay in the form \'d SUP dt\' (u(t) + F(t, \'u IND.t\')) = A(t)u(t) + G(t, \'u IND. t\'), t IT BELONGS\' (0, a), \'u IND.0\' = \'varphi\' \'IT BELONGS\' , where is a family of closed linear operator in a Banach space X, with a common domain D = D(A(t)), t \'IT BELONGS\' R, densely defined in X; the history \'u IND. t\' : (-\'THE infinite\', 0] \' ARROW\' X, ut(\'THETA\') = x(t+\'THETA\'), belongs to some abstract phase space B defined axiomatically and F,G : I ×B \'ARROW\' X are appropriate functions and I is a bounded or unbounded interval in R. To establish some of our results, we will use the properties of a systems of evolution (U(t, s))\' t IND. > OR =\'s, for a system in the form u? (t) - A(t)u(t) = 0, t \'IT BELONGS\' (0, a), \'u IND.0\' = \'PHI\', where (U(t, s))\'t IND. > 0R =\'s is a family of bounded linear operators on X
|
Page generated in 0.071 seconds