• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure Sensitivity of Alkanes Hydrogenolysis and Alkynes Hydrogenation on Supported Ir Catalysts

Zhang, Xiwen 23 March 2021 (has links)
In many catalytic systems, the activity and selectivity of supported metal catalysts or extended metal surface catalysts would be affected by the metal surface structure, and this phenomenon is called structure sensitivity. Generally, structure sensitivity is led by the change of geometric and electronic properties of the metal on the surface. The variation of metal nuclearity and metal-support interactions are effective ways to change the geometric and electronic properties of the supported metal catalyst, leading to different types of the active sites exposing on the support that would take effect on catalyzing the reaction. In this work, a series of supported Ir catalysts (on MgAl2O4 and SiO2) with different particle sizes less than 3 nm were utilized for hydrogenolysis of n-butane and ethane to study the structure sensitivity as well as the potential reaction pathways. The results indicate that the activity of n-butane hydrogenolysis increases as Ir particle size increases in the small particle size range (0.7–1.4 nm) and then drops when the Ir particle size further increases and the Ir single atoms might be inactive for hydrogenolysis after the post-reaction analysis. The selectivity of n-butane hydrogenolysis is dominated by central and one terminal C–C bond cleavage on the n-butane molecules at low temperature range. The selectivity to central C–C bond cleavage is highly dependent on the size of Ir and increases with a decrease in particle size down to ~1.4 nm but remains constant with further decrease in size. The hydrogenolysis of ethane shows a similar trend in the small size range but the activity is much lower than n-butane, which supports the low level of series reaction pathway in the case of n-butane hydrogenolysis. In addition to Ir nuclearity, the effect of electronic properties was also studied on another series of Ir catalysts supported on ZnAl2O4, in which zinc replace the magnesium within the same spinel structure. The characterization results including HAADF-STEM and volumetric CO chemisorption show the difference of Ir nuclearity in the subnanometer regime and nanoparticles (~1.4 nm), while XPS and DRIFTS indicate the difference of electronic properties from metal-support interaction on the two Ir catalysts with the same nuclearity but reduced at different temperatures. Acetylene hydrogenation is structure sensitive on Ir/ZnAl2O4 catalysts and the activity and selectivity are mainly determined by Ir nuclearity instead of the difference in electronic properties. The Ir single atoms and subnanometer clusters are more selective to the target product of C2H4 but less active than large Ir nanoparticles as there might be more π-bonded adsorption than di-σ bonded adsorption for C2H2 on the Ir single atoms and subnanometer clusters. / Doctor of Philosophy / The supported metal catalyst is a kind of effective substance that could help increase the reaction rate when being properly utilized in the reaction. From the industry point of view, the best thing is to maximize the catalyst productivity and minimize the expense so that the economic benefit could be magnified. The catalyst effectiveness in a certain reaction might be different when the surface structure of the catalyst varies. Usually, only the fraction of the surface metals could take effect. As the particle size of the catalyst decreases, the fraction of the surface atoms that contain active sites drastically changes, leading to a different catalytic performance and probably lower cost with improved efficiency for metal utilization. Therefore, it is very significant for the researchers to study the reaction structure sensitivity on the same series of catalysts with different particle sizes. Also, by understanding the reaction mechanism and fundamentals of the catalytic system, it would be possible for the researchers to rationally design the catalysts aiming at higher efficiency and lower cost. In this work, the reaction of hydrogenolysis that cleaves the C–C bonds within the alkanes molecules was studied on the supported Ir catalysts (Ir/MgAl2O4 and Ir/SiO2) with different particle sizes ranging from mostly single atoms, subnanometer clusters to nanoparticles. For n-butane hydrogenolysis, it is found that the selectivity to the target product of ethane is weakly dependent on particle size when smaller than 1.4 nm but decreases as the size further increases. Meantime, the activity is highest on the catalyst with surface-average particle size of 1.4 nm. Therefore, Ir size of ~1.4 nm is optimum for activity and selectivity to ethane. The series of Ir/ZnAl2O4 catalysts was tested for structure sensitivity by another probe reaction, semi-hydrogenation of acetylene. The adsorbed acetylene molecules could be hydrogenated by adding two hydrogen to form the adsorbed ethylene before desorption or further hydrogenation to form ethane. Our results show the Ir single atoms and subnanometer clusters are more selective to the target product of ethylene but less active than the large nanoparticles. With the understanding of structure sensitivity, researchers are able to rationally design the catalysts based on their necessity for certain reactions.
2

Caractérisation in operando de l’endommagement par électromigration des interconnexions 3D : Vers un modèle éléments finis prédictif / In Operando Characterization of Electromigration-Induced Damage in 3D Interconnects : Toward a predictive finite elements model

Gousseau, Simon 26 January 2015 (has links)
L'intégration 3D, mode de conception par empilement des puces, vise à la fois la densification des systèmes et la diversification des fonctions. La réduction des dimensions des interconnexions 3D et l'augmentation de la densité de courant accroissent les risques liés à l'électromigration. Une connaissance précise de ce phénomène est requise pour développer un modèle numérique prédictif de la défaillance et ainsi anticiper les difficultés dès le stade de la conception des technologies. Une méthode inédite d'observation in operando dans un MEB de l'endommagement par électromigration des interconnexions 3D est conçue. La structure d'étude avec des vias traversant le silicium (TSV) « haute densité » est testée à 350 °C avec une densité de courant injectée de l'ordre de 1 MA/cm², et simultanément caractérisée. La réalisation régulière de micrographies informe sur la nucléation des cavités, forcée dans la ligne de cuivre au-dessus des TSV, et sur le scénario de leur évolution. La formation d'ilots et la guérison des cavités sont également observées au cours des essais (quelques dizaines à centaines d'heures). Une relation claire est établie entre l'évolution des cavités et celle de la résistance électrique du dispositif. Les différents essais, complétés par des analyses post-mortem (FIB-SEM, EBSD, MET) démontrent l'impact de la microstructure sur le mécanisme de déplétion. Les joints de grains sont des lieux préférentiels de nucléation et influencent l'évolution des cavités. Un effet probable de la taille des grains et de leur orientation cristalline est également révélé. Enfin, l'étude se consacre à l'implémentation d'un modèle multiphysique dans un code éléments finis de la phase de nucléation des cavités. Ce modèle est constitué des principaux termes de gestion de la migration. / 3D integration, conception mode of chips stacking, aims at both systems densification and functions diversification. The downsizing of 3D interconnects dimensions and the increase of current density rise the hazard related to electromigration. An accurate knowledge of the phenomenon is required to develop a predictive modeling of the failure in order to anticipate the difficulties as soon as the stage of technologies conception. Thus, a hitherto unseen SEM in operando observation method is devised. The test structure with “high density” through silicon vias (TSV) is tested at 350 °C with an injected current density of about 1 MA/cm², and simultaneously characterized. Regular shots of micrographs inform about the voids nucleation, forced in copper lines above the TSV, and about the scenario of their evolution. Islets formation and voids curing are also observed during the tens to hundreds hours of tests. A clear relation is established between voids evolution and the one of the electrical resistance. The different tests, completed by post-mortem analyses (FIB-SEM, EBSD, TEM), demonstrate the impact of microstructure on the depletion mechanism. Grains boundaries are preferential voids nucleation sites and influence the voids evolution. A probable effect of grains size and crystallographic orientation is revealed. Finally, the study focuses on the implementation of a multiphysics modeling in a finite elements code of the voids nucleation phase. This modeling is constituted of the main terms of the migration management.
3

Structure Sensitivity in the Subnanometer Regime on Pt and Pd Supported Catalysts

Kuo, Chun-Te 29 October 2020 (has links)
Single-atom and cluster catalysts have been receiving significant interest due to not only their capability to approach the limit of atom efficiency but also to explore fundamentally unique properties. Supported Pt-group single atoms and clusters catalysts in the subnanometer size regime maximize the metal utilization and were reported to have extraordinary activities and/or selectivities compared with nanoparticles for various reactions including hydrogenation reactions. However, the relationship between metal nuclearity, electronic and their unique catalytic properties are still unclear. Thus, it is crucial to establish their relations for better future catalyst design. Ethylene hydrogenation and acetylene hydrogenation are two important probe reactions with the simplest alkene and alkyne, and they have been broadly studied as the benchmark reactions on the various catalyst systems. However, the catalytic properties and reaction mechanism of those hydrogenation reactions for metal nuclearitiy in the subnanometer regime is still not well understood. In this study, we applied different characterization techniques including x-ray absorption fine structure (XAFS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy(XPS), diffuse reflectance infrared spectroscopy (DRIFTS), calorimetry and high-resolution scanning transmission electron microscopy (STEM) to investigate the structure of Pt/TiO2 and Pd/COF single-atom catalysts and tested their catalytic properties for hydrogenation reactions. In order to develop such relations, we varied the nuclearity of Pt supported on TiO2 from single atoms to subnanometer clusters to larger nanoparticles. For acetylene hydrogenation, Pt in the subnanometer size regime exhibits remarkably high selectivity to ethylene compared to its nanoparticle counterparts. The high selectivity is resulted from the decreased electron density on Pt and destabilization of C2H4, which were rationalized by X-ray photoelectron spectroscopy and calorimetry results. On the other hand, the activity of H2 activation and acetylene hydrogenation decreased as Pt nuclearity decreased. Therefore, our results show there's a trade-off between activity and selectivity for acetylene hydrogenation. Additionally, the kinetics measurements of ethylene hydrogenation and acetylene hydrogenation were performed on Pt/TiO2 catalysts, and they found to be structure sensitive for both reactions, which the reaction orders and activation energy changes as particles size change. The activity of ethylene hydrogenation decreases, and activation energy increase from 43 to 86 kJ/mol, as Pt nuclearity decreased from an average size of 2.1 nm to 0.7 nm and single atoms. The reaction orders in hydrocarbons (ethylene and acetylene) were less negative on subnanometer clusters and single atoms in contract to nanoparticles. The results imply that hydrocarbons, ethylene and acetylene species, do not poison the catalyst on Pt in the subnanometer size regime, and hydrogen activation turn to competitive adsorption path with surface hydrocarbons species. Moreover, single atom Pd supported on imine-linked covalent organic framework was synthesized, characterized by a various of techniques including X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of adsorbed CO, and evaluated its catalytic properties for ethylene hydrogenation. The XAS results show that Pd atoms are isolated and stabilized by two covalent Pd–N and Pd-Cl bonds. DRIFTS of CO adsorption shows a sharp symmetrical peak at 2130 cm−1. The Pd single atoms are active for hydrogenation of ethylene to ethane at room temperature. The reaction orders in C2H4 and H2 were 0.0 and 0.5 suggesting that ethylene adsorption is not limiting while hydrogen forms on Pd through dissociative adsorption. / Doctor of Philosophy / More than 90% of chemicals come from petroleum and natural gas, and most of these chemicals are composed of alkene and alkyne, hydrocarbons containing at least one double bonds or triple bonds, such as ethylene, propylene, butenes, butadiene. These small hydrocarbon molecules with carbon-carbon bonds (double or triple) are in great interest of fundamental study and serve as probe units for understanding more complex reactions. Catalysts are materials that can be added to a chemical reaction to accelerate the specific rate of reactions. Most catalysts are supported noble metals thus increase the utilization of metal atoms are important. Decreasing the particle size to increase the metal dispersion is the simple approach to maximize the atom efficiency. However, it is not well understood how do the electronic property and catalytic performance change as particle size decrease. In this work, we focus on the structure sensitivity on catalysts in sub-nanometer region. Supported Pt and Pd catalysts, known to be highly active for hydrogenation reactions, are studied on hydrogenation reactions of acetylene and ethylene, the simplest alkene and alkyne. The Pd and Pt catalysts with particle sizes ranging from single atoms, sub-nanometer clusters and nanoparticles were prepared, characterized and tested for hydrogenation reactions mentioned above. The results show that significantly change in electronic property, catalytic performance (activity and/or selectivity) and reaction kinetics of the catalysts as the particle size changing from nanometer to sub-nanometer region. The fundamental understanding of structure sensitivity on catalysts and their relations between surface structure, electronic property and catalytic performance presented in this work can help the researchers design better catalysts for future work.
4

Structural and Kinetic Study of Low-temperature Oxidation Reactions on Noble Metal Single Atoms and Subnanometer Clusters

Lu, Yubing 23 April 2019 (has links)
Supported noble metal catalysts make the best utilization of noble metal atoms. Recent advances in nanotechnology have brought many attentions into the rational design of catalysts in the nanometer and subnanometer region. Recent studies showed that catalysts in the subnanometer regime could have extraordinary activity and selectivity. However, the structural performance relationships behind their unique catalytic performances are still unclear. To understand the effect of particle size and shape of noble metals, it is essential to understand the fundamental reaction mechanism. Single atoms catalysts and subnanometer clusters provide a unique opportunity for designing heterogeneous catalysts because of their unique geometric and electronic properties. CO oxidation is one of the important probe reactions. However, the reaction mechanism of noble single atoms is still unclear. Additionally, there is no agreement on whether the activity of supported single atoms is higher or lower than supported nanoparticles. In this study, we applied different operando techniques including x-ray absorption fine structure (XAFS), diffuse reflectance infrared spectroscopy (DRIFTS), with other characterization techniques including calorimetry and high-resolution scanning transmission electron microscopy (STEM) to investigate the active and stable structure of Ir/MgAl2O4 and Pt/CeO2 single-atom catalysts during CO oxidation. With all these characterization techniques, we also performed a kinetic study and first principle calculations to understand the reaction mechanism of single atoms for CO oxidation. For Ir single atoms catalysts, our results indicate that instead of poisoning by CO on Ir nanoparticles, Ir single atoms could adsorb more than one ligand, and the Ir(CO)(O) structure was identified as the most stable structure under reaction condition. Though one CO was strongly adsorbed during the entire reaction cycle, another CO could react with the surface adsorbed O* through an Eley-Rideal reaction mechanism. Ir single atoms also provide an interfacial site for the facile O2 activation between Ir and Al with a low barrier, and therefore O2 activation step is feasible even at room temperature. For Pt single-atom catalysts, our results showed that Pt(O)3(CO) structure is stable in O2 and N2 at 150 °C. However, when dosing CO at 150 °C, one surface O* in Pt(O)3(CO) could react with CO to form CO2, and the reacted O* can be refilled when flowing O2 again at 150 °C. This suggests that an adsorbed CO is present in the entire reaction cycle as a ligand, and another gas phase CO could react with surface O* to form CO2 during low-temperature CO oxidation. Supported single atoms synthesized with conventional methods usually consist of a mixture of single atoms and nanoparticles. It is important to quantify the surface site fraction of single atoms and nanoparticles when studying catalytic performances. Because of the unique reaction mechanism of Ir single atoms and Ir nanoparticles, we showed that kinetic measurements could be applied as a simple and direct method of quantifying surface site fractions. Our kinetic methods could also potentially be applied to quantifying other surface species when their kinetic behaviors are significantly different. We also benchmarked other in-situ and ex-situ methods of quantifying surface site fraction of single atoms and nanoparticles. To bridge the gap between single atoms and nanoparticles and have a better understanding of the effect of nuclearity on CO oxidation, we also studied supported Ir subnanometer clusters with the average size less than 0.7 nm (< 13 atoms) prepared by both inorganic precursor and organometallic complex Ir4(CO)12. Low-temperature CO adsorption indicates that CO and O2/O could co-adsorb on Ir subnanometer clusters, however on larger nanoparticle the particle surface is covered by CO only. Additional co-adsorption of CO and O2 was studied by CO and O2 calorimetry at room temperature. CO oxidation results showed that Ir subnanometer clusters are more active than Ir single atoms and Ir nanoparticles at all conditions, and this could be explained by the competitive adsorption of CO and O2 on subnanometer clusters. / Doctor of Philosophy / CO oxidation is one of the important reactions in catalytic converters. Three-way catalysts, typically supported noble metals, are very efficient at high temperature but could be poisoned by CO at cold start. Better designed catalysts are required to improve the performance of the catalytic converter to lower the emissions of gasoline engines. To reach this goal, more efficient use of the noble metal is required. Single-atom catalysts consist of isolated noble metal atoms supported on different supports, which provide the best utilization of noble metal atoms and provides a new opportunity for a better design of heterogeneous catalysts. The unique electronic and geometric properties of metal single atoms catalysts could lead to a better activity and selectivity. Subnanometer clusters have also been shown to have unique electronic properties. With a better understanding of the structure of supported single atoms and subnanometer clusters, their catalytic performance can be optimized for better catalysts in the catalytic converter and other applications. In this work, we applied in-situ and operando characterization, kinetic studies and first principle calculations aiming to understand the active and stable structure of noble metal single atoms and vi subnanometer clusters under reaction condition, and their reaction mechanisms during CO oxidations. For MgAl₂O₄ supported Ir single atoms, our results suggest that CO could be co-adsorbed with O₂/O under reaction conditions. These multiple ligands adsorption leads to a unique reaction mechanism during CO oxidation. Though one CO was adsorbed during the whole reaction cycle, another gas phase CO could react with the O* species co-adsorbed with CO through an Eley-Rideal mechanism. This suggests that Ir single atoms are no longer poisoned by CO, and on the other hand the O₂ can be activated on an interfacial site with a low reaction barrier. Ir subnanometer clusters showed higher activities than Ir single atoms and nanoparticles. In-situ IR and high energy resolution fluorescence detected – X-ray absorption near edge spectroscopy (HERFD-XANES) showed that CO could co-adsorb with O₂ at room temperature, and this competitive adsorption could explain the high activity during CO oxidation. Supported Ir single atoms and subnanometer clusters are not poisoned by CO and O₂ could be co-adsorbed, this could be potentially applied to solve the poisoning of catalyst in the catalytic converter at cold start temperature. We also performed kinetic study on CeO₂ supported Pt single atoms. Similar behavior was observed, and we showed that the CO and O co-adsorbed complex is stable in O₂ and N₂, but could react in CO. With the understanding of the active structure of noble metal single atoms and the origin of activities, better-designed catalysts can be synthesized to improve the activity and selectivity of low-temperature oxidation reactions.

Page generated in 0.1436 seconds