• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiphysics Modeling Of Devices For Whole Organ Healthcare Applications

Tong, Yuxin 12 June 2017 (has links)
In order to fully understand the functionality of conformal devices, it is critical to develop computational models built from engineered models of 3-dimensional objects. This thesis established a scanning procedure to engineering 3D digital model for whole organs, known as template engineering. The resultant scanning data enabled designing, manufacturing, and modeling of novel organ healthcare devices. Specifically, we applied template engineering and structured-light scanning techniques to capture the 3D topographical information for whole organ systems. Sequentially, we developed multiphysics models for understanding the device functionality, including the function of devices for microfluidic interface and whole organ mechanical stabilization. / Master of Science
2

Design, Analysis, Modeling and Testing of a Micro-scale Refrigeration System

Guo, Dongzhi 01 September 2014 (has links)
Chip scale refrigeration system is critical for the development of electronics with the rapid increase of power consumption and substantial reduction of device size, resulting in an emergent demand on novel cooling technologies with a high efficiency for the thermal management. In this thesis, active refrigeration devices based on Stirling cycle and an electrocaloric material, are designed and investigated to achieve a high cooling performance. Firstly, a new Stirling micro-refrigeration system composed of arrays of silicon MEMS cooling elements is designed and evaluated. The cooling elements are fabricated in a stacked array on a silicon wafer. A regenerator is placed between the compression (hot side) and expansion (cold side) diaphragms, which are driven electrostatically. Under operating conditions, the hot and cold diaphragms oscillate sinusoidally and out of phase such that heat is extracted to the expansion space and released from the compression space. A first-order of thermodynamic analysis is performed to study the effect of geometric parameters. Losses due to regenerator non-idealities and chamber heat transfer limitation are estimated. A multiphysics computational approach for analyzing the system performance that considers compressible flow and heat transfer with a large deformable mesh is demonstrated. The optimal regenerator porosity for the best system COP (coefficient of performance) is identified. To overcome the computational complexity brought about by the fine pillar structure in the regenerator, a porous medium model is used to allow for modeling of a full element. The analysis indicates the work recovery of the system and the diaphragm actuation are main challenges for this cooler design.The pressure drop and friction factor of gas flow across circular silicon micro pillar arrays fabricated by deep reactive ion etch (DRIE) process are investigated. A new correlation that considers the coupled effect of pillar spacing and aspect ratio, is proposed to predict the friction factor in a Reynolds v number range of 1-100. Silicon pillars with large artificial roughness amplitudes is also fabricated, and the effect of the roughness is studied in the laminar flow region. The significant reduction of pressure drop and friction factor indicates that a large artificial roughness could be built for pillar arrays in the regenerator to enhance the micro-cooler efficiency. The second option is to develop a fluid-based refrigeration system using an electrocaloric material poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)] terpolymer. Each cooling element includes two diaphragm actuators fabricated in the plane of a silicon wafer, which drive a heat transfer fluid back and forth across terpolymer layers that are placed between them. Finite element simulations with an assumption of sinusoidal diaphrahm motions are conducted to explore the system performance detailedly, including the effects of the applied electric field, geometric dimensions, operating frequency and externally-applied temperature span. Multiphysics modeling coupled with solid-fluid interaction, heat transfer, electrostatics, porous medium and moving mesh technique is successfully performed to verify the thermal modeling feasibility. The electrocaloric effect in thin films of P(VDF-TrFE-CFE) terpolymer is directly measured by infrared imaging at ambient conditions. At an electric field of 90 V/μm, an adiabatic temperature change of 5.2 °C is obtained and the material performance is stable over a long testing period. These results suggest that application of this terpolymer is promising for micro-scale refrigeration.
3

Étude expérimentale et numérique du frittage-assemblage d’un composite conducteur l’Ag-SnO2 par courants pulsés / Experimental and numerical study of the sintering - assembly of a composite conductor Ag - SnO2 by pulsed currents

Brisson, Élodie 16 October 2014 (has links)
Ces travaux de thèse s’inscrivent dans le cadre du projet "IMPULSE" qui traite du développement d’un procédé innovant d’élaboration de multi-matériaux par courant pulsé et est financé par l’Agence National de la Recherche. Ils ont pour objectif d’étudier et de mettre en évidence la faisabilité, du frittage-assemblage sous charge par courants pulsés, d’un composite conducteur l’AgSn-O2 sur un support en cuivre. Cette problématique, en lien avec les applications industrielles de Schneider Electric Industries, a été abordée au travers de simulations numériques du procédé de frittage-assemblage et d’essais expérimentaux. Les travaux sur les étapes de frittage et d’assemblage ont pu être traités séparément. Les phénomènes qui interviennent lors du frittage par effet Joule et les effets spécifiques liés à l’utilisation de certaines formes ou fréquences de courant, divisent encore la communauté scientifique. Des essais de frittage et frittage-assemblage par chauffage résistif avec différents types de courant (pulsé, continu, 50 Hz) ont été réalisés et ont permis de mettre en évidence l’absence d’effets spécifiques associés aux courants pulsés dans le cas de l’Ag-SnO2. Par conséquence, un modèle électrocinétique classique stationnaire a été retenu concernant les aspects électriques du modèle macroscopique de frittage. Ces essais ont également révélé l’importance des résistances de contact électrique, présentes entre les outillages (poinçons) et l’échantillon, et de la résistance de contact thermique qui existe entre l’échantillon et la matrice. Le modèle thermique instationnaire choisi est couplé fortement au modèle électrocinétique. Les lois de comportement utilisées pour la masse volumique et les conductivités (électrique et thermique), qui interviennent dans le modèle Electro-Thermique (ET), tiennent compte des changements de microstructure grâce à l’utilisation de variables internes de « densification » et de « cohésion ». Les évolutions des résistances de contact électrique et thermique, mesurées sur un dispositif ex-situ, sont aussi implémentées dans le modèle ET.D’un point de vue mécanique, un modèle de Norton associé au critère de Green a été choisi pour modéliser le comportement viscoplastique de la matière et la compressibilité irréversible du matériau lors du frittage sous charge de l’Ag-SnO2. Les fonctions intervenant dans le critère dépendent de la densité relative, dont la cinétique de densification est calculée à partir de la trace du tenseur des vitesses de déformation irréversible. Les paramètres de la loi de comportement mécanique ont été identifiés par méthodes inverses, à l’aide des logiciels SiDoLo et Abaqus, à partir d’essais thermomécaniques spécifiques réalisés sur la machine Gleeble du LIMatB. La loi de comportement mécanique a été implémentée dans une bibliothèque spécifique du code de calcul par éléments finis Sysweld qui est utilisé pour la simulation numérique d’essais de frittage instrumentés. La concordance entre les résultats numériques et expérimentaux (tensions, températures, mesure extensométrique), est satisfaisante et les écarts restent inférieurs aux erreurs expérimentales. Concernant l’étape d’assemblage, une campagne de caractérisation de la tenue de l’assemblage Ag-SnO2/Cu, a été menée sur la machine Gleeble grâce à des essais de frittage-assemblage anisothermes. Différentes cinétiques thermiques et différentes températures maximales, ont été testées afin de mettre en évidence l’effet du temps et de la température. Des tests de cisaillement de l’assemblage, ont permis le calcul d’un observable afin de juger de la qualité de la liaison. Au vu des résultats, un modèle dépendant uniquement de la température atteinte dans l’échantillon a été développé afin d’estimer la tenue de l’assemblage Ag-SnO2/Cu. / This thesis is part of the "IMPULSE" project, which is financed by the NationalAgency of Research. This project concerns the development of innovative process to produce multimaterials by pulsed currents. The ability of sintering and joining Ag-SnO2 powder on a copper support in the same process under pressure by pulsed currents is investigated. This problematic, linked to industrial applications of Schneider Electric Industries SEI), has been approached through numerical simulations and experimental tests of sintering-joining. Sintering and joining steps have been dealt separately in this works. Sintering phenomena and specific effects of pulsed currents still divide the scientific community. Sintering and sintering-joining test by resistive heating thanks different kinds of current (pulsed, DC, AC) have been realized. They have enabled to highlight that there are not specific effects of pulsed currents in the Ag-SnO2 case. Consequently, a classical stationary electrokinetic model has been used for electrical aspects in the macroscopic sintering model. These tests have also revealed the importance of the contact resistance (CR) present between tools and sample, and more particularly the electrical CR between punches and sample and the thermal CR between die and sample. The non-stationary thermal model chose is strongly coupled with the electrokinetic model. Characterization tests have shown that electrical and thermal conductivities increase with inter-granular contact rate improvement, which is caused by strain during densification and by diffusion ("cohesion" mechanisms). The behavior laws used to calculate the density and the conductivities (electrical and thermal) of the Electrokinetic-Thermal model (ET), take into account these microstructural evolutions by mean of internal variables of "densification" and "cohesion". Electrical and thermal contact resistances, measured in LIMatB’s device versus pressure and temperature, are implemented in the ET model. From a mechanical point of view, a Norton model combined with a Green criterion has been chosen to modeling the viscoplastic behavior of matter and the irreversible compressibility of Ag-SnO2 material during sintering under pressure. The criterion functions depend on the relative density. The densification kinetic is calculated from the trace of the irreversible deformation kinetics. The properties (viscoplastic parameters, elasticity limit,...) of mechanical behavior law have been identified by inverse methods using SiDoLo and Abaqus software from thermo-mechanical tests achieved on LIMatB’s Gleeble machine. The mechanical properties don’t depend of cohesion mechanisms. The mechanical behavior law has been implemented in the finite element code Sysweld to simulate sintering tests. The agreement between numerical and experimental results (tensions, temperatures, extensometric measurements) is correct and the differences remain inferior to the experimental errors. Tests of joining of Ag-SnO2 on a copper support, non isothermal under low pressure, have been achieved on Gleeble machine. Different thermal kinetics and different maximal temperatures have been explored to highlight time and temperature effects on diffusion mechanisms at the interface. Shear tests of the joining have enabled the calculation of an observable to estimate the bonding quality. From these results, a model which only depends of temperature reached in the sample has been developed to estimate the Ag-SnO2/Cu joining resistance. This joining model could be easily integrated in the more complex sintering model.
4

MECHANICS IN ORGANIC MIXED IONIC-ELECTRONIC CONDUCTORS

Xiaokang Wang (15181663) 05 April 2023 (has links)
<p>This Dissertation aims at establishing an integrated framework of multimodal experiments and multiphysics theory to extend the understanding of the mechanics in electrochemically active materials using organic mixed ionic-electronic conductors (OMIECs) as a model system. </p> <p>OMIECs allow the transport of both ions and electrons, which is accompanied by the (electronic, micro-) structural reorganization. The electronic structural change in OMIECs induces transforms in the electrical conductivity and optical absorbance. The change in molecular packing invites the size change and evolution of mechanical properties. The multiphysics processes render OMIECs a fascinating platform for understanding the multi-physics coupling and advancing organic electrochemical devices. </p> <p>Despite significant progress, there are urgent needs in the experimental techniques and the subsequent mechanical characterization, theoretical understanding of the multiphysics processes, and mechanics-informed design principles for high-performance devices. Specifically, (i) an accurate and straightforward experimental method is in need to better understand the mechanical behaviors and kinetics such as swelling and softening of OMIECs upon electrochemical redox reactions; (ii) a theoretical framework is missing that describes the rich coupled multiphysics processes such as large deformation, charge and mass transport, electrostatics, and phase evolution in OMIECs; (iii) the rational design of the materials and structures based on mechanics principles are required for mechanically reliable, high-performance organic electrochemical devices.</p> <p>In this Dissertation, the mechanics of OMIECs are studied systematically. The basics of OMIECs, knowledge gaps, and the outline are introduced in Chapter 1. The in-situ environmental nanoindentation apparatus and the associating characterization techniques are presented in Chapter 2. In Chapter 3, a theoretical mechanics model is presented that elucidates the interfacial mechanical degradation of thin-film electrodes and outlines the design principles for mechanically reliable electrodes. In Chapter 4, the electrochemical doping kinetics and its stress dependency on conductive polymers are studied via a designed moving front device. Chapter 5 presents a thermodynamically consistent continuum theory of two-phase OMIECs undergoing large deformation, charge and mass transport, electrostatics, and phase separation, which forms the theoretical foundation for such conductive polymer systems. The conclusion and perspectives on future work are presented in Chapter 6. </p>
5

Fundamental Study Of Mechanical And Chemical Degradation Mechanisms Of Pem Fuel Cell Membranes

Yoon, Wonseok 01 January 2010 (has links)
One of the important factors determining the lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is membrane degradation and failure. The lack of effective mitigation methods is largely due to the currently very limited understanding of the underlying mechanisms for mechanical and chemical degradations of fuel cell membranes. In order to understand degradation of membranes in fuel cells, two different experimental approaches were developed; one is fuel cell testing under open circuit voltage (OCV) with bi-layer configuration of the membrane electrode assemblies (MEAs) and the other is a modified gas phase Fenton's test. Accelerated degradation tests for polymer electrolyte membrane (PEM) fuel cells are frequently conducted under open circuit voltage (OCV) conditions at low relative humidity (RH) and high temperature. With the bi-layer MEA technique, it was found that membrane degradation is highly localized across thickness direction of the membrane and qualitatively correlated with location of platinum (Pt) band through mechanical testing, Infrared (IR) spectroscopy, fluoride emission, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) measurement. One of the critical experimental observations is that mechanical behavior of membranes subjected to degradation via Fenton's reaction exhibit completely different behavior with that of membranes from the OCV testing. This result led us to believe that other critical factors such as mechanical stress may affect on membrane degradation and therefore, a modified gas phase Fenton's test setup was developed to test the hypothesis. Interestingly, the results showed that mechanical stress directly accelerates the degradation rate of ionomer membranes, implying that the rate constant for the degradation reaction is a function of mechanical stress in addition to commonly known factors such as temperature and humidity. Membrane degradation induced by mechanical stress necessitates the prediction of the stress distribution in the membrane under various conditions. One of research focuses was on the developing micromechanism-inspired continuum model for ionomer membranes. The model is the basis for stress analysis, and is based on a hyperelastic model with reptation-inspired viscous flow rule and multiplicative decomposition of viscoelastic and plastic deformation gradient. Finally, evaluation of the membrane degradation requires a fuel cell model since the degradation occurs under fuel cell operating conditions. The fuel cell model included structural mechanics models and multiphysics models which represents other phenomena such as gas and water transport, charge conservation, electrochemical reactions, and energy conservation. The combined model was developed to investigate the compression effect on fuel cell performance and membrane stress distribution.
6

Integrated Computational and Experimental Approach to Control Physical Texture During Laser Machining of Structural Ceramics

Vora, Hitesh D. 12 1900 (has links)
The high energy lasers are emerging as an innovative material processing tool to effectively fabricate complex shapes on the hard and brittle structural ceramics, which previously had been near impossible to be machined effectively using various conventional machining techniques. In addition, the in-situ measurement of the thermo-physical properties in the severe laser machining conditions (high temperature, short time duration, and small interaction volume) is an extremely difficult task. As a consequence, it is extremely challenging to investigate the evolution of surface topography through experimental analyses. To address this issue, an integrated experimental and computational (multistep and multiphysics based finite-element modeling) approach was employed to understand the influence of laser processing parameters to effectively control the various thermo-physical effects (recoil pressure, Marangoni convection, and surface tension) during transient physical processes (melting, vaporization) for controlled surface topography (surface finish). The results indicated that the material lost due to evaporation causes an increase in crater depth of machined cavity, whereas liquid expulsion created by the recoil pressure increases the material pileup height around the lip of machined cavity, the major attributes of surface topography (roughness). Also, it was found that the surface roughness increased with increase in laser energy density and pulse rate (from 10 to 50Hz), and with the decrease in distance between two pulses (from 0.6 to 0.1mm) or the increase in lateral and transverse overlap (0, 17, 33, 50, 67, and 83%). The results of the computational model are also validated by experimental observations with reasonably close agreement.
7

Computational Modeling and Simulation of Thermal-Fluid Flow and Topology Formation in Laser Metal Additive Manufacturing

Vincent, Timothy John January 2017 (has links)
No description available.
8

Theoretical and Experimental Investigations on Microelectrodeposition Process

Haghdoost, Atieh 09 September 2013 (has links)
Electrodeposition is one of the main techniques for fabricating conductive parts with one or two dimensions in the micron size range. This technique is utilized to coat surfaces with protective films of several micrometers thickness or fabricate standalone microstructures. In this process, an electrochemical reaction occurs on the electrode surface by applying an electric voltage, called overpotential. Different electrochemical practices were presented in the literature to obtain kinetic parameters of an electrochemical reaction but most of these practices are hard to implement for the reactions occur on a microelectrode. Toward addressing this issue, the first part of the dissertation work presents a combined experimental and analytical method which can more appropriately provides for the kinetic measurement on a microelectrode. Another issue which occurs for electrodeposition on microscale recessed areas is the deviation of the profile of the deposition front from the substrate shape. Non-uniform deposition front usually obtains for a deposit evolved from a flat substrate with microscale size. Consequently, a subsequent precision grinding process is required to level the surface of the electrodeposited microparts. In order to remove the need for this subsequent process, in the second and third parts of the dissertation work, multiphysics modeling was used to study the effects of the fabrication parameters on the uniformity of the deposit surface and suggest a design strategy. Surface texture of the deposit is another parameter which depends on the fabrication parameters. Several important characteristics of the electrodeposited coating including its wettability depend on the surface texture. The next part of the dissertation work presents an experimental investigation and a theoretical explanation for the effects of the overpotential and bath concentration on the surface texture of the copper deposit. As a result of this investigation, a novel two-step electrodeposition technique is developed to fabricate a superhydrophobic copper coating. In the last part of the dissertation work, similar investigation to the previous sections was presented for the effects of the fabrication parameters on the crystalline structure of the deposit. This investigation shows that nanocrystalline and superplastic materials can be fabricated by electrodeposition if appropriate fabrication parameters are applied. / Ph. D.
9

Modélisation et analyse d'un système de dégivrage électromécanique en aéronautique / Modeling and analysis of an electromechanical de-icing system in aeronauticss

Estopier castillo, Melissa 23 October 2018 (has links)
Modélisation et analyse d’un système de dégivrage en aéronautiqueRésuméCe manuscrit de thèse aborde les travaux de modélisation d’une nouvelle technologie électromécanique pour le dégivrage en aéronautique en mode vol.Le principe de fonctionnement de la technologie étudiée repose sur la déformation mécanique des surfaces à dégivrer à partir d’efforts électromagnétiques générés par une excitation en courant électrique de forte intensité. La solution imaginée par le partenaire industriel Zodiac Aerospace, a conduit à un démonstrateur dont les premiers essais ont été lancés préalablement à cette thèse. À partir des résultats obtenus, l’objectif de ces travaux de thèse a été d’obtenir un modèle adapté pour les futures démarches d’optimisation dans le but ultime d’aller vers une solution de dégivrage plus électrique que les solutions existantes, performante, et plus efficace en termes de rendement énergétique.Une modélisation multiphysique a été réalisée. Cette modélisation est constitué de plusieurs sous modèles analytiques qui ont été intégrés sur une plateforme de résolution numérique. La modélisation mécanique met en œuvre une approche de type plaque par éléments bande, qui a été résolu en fonction du temps par une méthode de différences finies. Le modèle mécanique résultant est dit semi-analytique. La modélisation électromagnétique repose sur une définition analytique et a présenté comme difficulté la complexité de la définition géométrique du démonstrateur. Un circuit électrique équivalent du dispositif complet a été identifié et les équations du modèle électrique ont été définies ; ceci a permis de réaliser une analyse énergétique pour comprendre la transformation des forces de nature différente et mettre en évidence la possibilité d’une future optimisation.Les résultats de simulation à partir du modèle final représentent assez bien la dynamique de la déformation mécanique observée expérimentalement mais présentent en revanche des limitations en termes de précision.Mots clé : Dégivrage électromécanique, aéronautique, modélisation multiphysique, déformation de plaques, force de Laplace. / Modeling and analysis of an electromechanical de-icing system in aeronauticsAbstractThis thesis report explains the modeling procedure of a new electromechanical de-icing technology in aeronautics for in-flight application.The operation principle of the technology resides in the mechanical deformation of the working surface caused by the effect of electromagnetic forces generated from a high-intensity current source.The industrial partner Zodiac Aerospace conceived this solution they carried out the construction of a demonstrator and a series of tests prior to this Ph.D. Based on the obtained results, the aim of this project was to achieve an adequate model of the de-icing system that should be suitable for further optimization of the device, such that a more electric de-icing solution will be proposed, with good performance and with higher energetic efficiency.A multiphysiscs model was developed, which comprises multiple analytical submodels that where integrated into a numerical resolution platform. The mechanical submodel implements a strip approach for plates solved via a finite differences method that permits time dependence evaluation, and can be defined as semi analytical. Another submodel is based on the mathematical definition of the electromagnetic behavior, the main complication of which was to consider the complex geometrical definition of the demonstrator. An equivalent electric circuit for the whole system was identified and the equations for an electrical submodel where then established. This allowed the study of the energy transformation and repartition, and reveals the possibility of future optimization.Simulation results from the final model properly reproduce the dynamics of the mechanical deformation response as were observed during the previous experiments, but also reveals some minor accuracy problems.Key words : Electromechanical de-icing, aeronautics, multiphysics modeling, deformation of plates, Laplace force.
10

Caractérisation in operando de l’endommagement par électromigration des interconnexions 3D : Vers un modèle éléments finis prédictif / In Operando Characterization of Electromigration-Induced Damage in 3D Interconnects : Toward a predictive finite elements model

Gousseau, Simon 26 January 2015 (has links)
L'intégration 3D, mode de conception par empilement des puces, vise à la fois la densification des systèmes et la diversification des fonctions. La réduction des dimensions des interconnexions 3D et l'augmentation de la densité de courant accroissent les risques liés à l'électromigration. Une connaissance précise de ce phénomène est requise pour développer un modèle numérique prédictif de la défaillance et ainsi anticiper les difficultés dès le stade de la conception des technologies. Une méthode inédite d'observation in operando dans un MEB de l'endommagement par électromigration des interconnexions 3D est conçue. La structure d'étude avec des vias traversant le silicium (TSV) « haute densité » est testée à 350 °C avec une densité de courant injectée de l'ordre de 1 MA/cm², et simultanément caractérisée. La réalisation régulière de micrographies informe sur la nucléation des cavités, forcée dans la ligne de cuivre au-dessus des TSV, et sur le scénario de leur évolution. La formation d'ilots et la guérison des cavités sont également observées au cours des essais (quelques dizaines à centaines d'heures). Une relation claire est établie entre l'évolution des cavités et celle de la résistance électrique du dispositif. Les différents essais, complétés par des analyses post-mortem (FIB-SEM, EBSD, MET) démontrent l'impact de la microstructure sur le mécanisme de déplétion. Les joints de grains sont des lieux préférentiels de nucléation et influencent l'évolution des cavités. Un effet probable de la taille des grains et de leur orientation cristalline est également révélé. Enfin, l'étude se consacre à l'implémentation d'un modèle multiphysique dans un code éléments finis de la phase de nucléation des cavités. Ce modèle est constitué des principaux termes de gestion de la migration. / 3D integration, conception mode of chips stacking, aims at both systems densification and functions diversification. The downsizing of 3D interconnects dimensions and the increase of current density rise the hazard related to electromigration. An accurate knowledge of the phenomenon is required to develop a predictive modeling of the failure in order to anticipate the difficulties as soon as the stage of technologies conception. Thus, a hitherto unseen SEM in operando observation method is devised. The test structure with “high density” through silicon vias (TSV) is tested at 350 °C with an injected current density of about 1 MA/cm², and simultaneously characterized. Regular shots of micrographs inform about the voids nucleation, forced in copper lines above the TSV, and about the scenario of their evolution. Islets formation and voids curing are also observed during the tens to hundreds hours of tests. A clear relation is established between voids evolution and the one of the electrical resistance. The different tests, completed by post-mortem analyses (FIB-SEM, EBSD, TEM), demonstrate the impact of microstructure on the depletion mechanism. Grains boundaries are preferential voids nucleation sites and influence the voids evolution. A probable effect of grains size and crystallographic orientation is revealed. Finally, the study focuses on the implementation of a multiphysics modeling in a finite elements code of the voids nucleation phase. This modeling is constituted of the main terms of the migration management.

Page generated in 0.4882 seconds