• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 10
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 41
  • 41
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular statics simulation of nano-indentation and nano-scratch on the amorphous Mg-Cu-Y metallic glasses

Yang, Jhen-yu 09 February 2011 (has links)
Amorphous Mg-Cu-Y metallic glasses are established by density functional theory and simulated annealing method in this study. The mechanical properties of amorphous Mg-Cu-Y metallic glasses are investigated by molecular statics simulations for the nano-indentation and the nano-scratch process. In this study, some potential energy parameters are obtained by fitting for describing the Mg-Cu-Y system. The bulk modulus, the Young¡¦s modulus and X-ray structure of the Mg-Cu-Y system are calculated. Our results are within 10% error compared with experimental values, which prove the correctness of fitted potential parameters. For the cases of nanoindentations, the indentation force-displacement and the influenced depth are calculated. The mechanical properties are obtained are close to experimental results. The both ¡§slip vector¡¨ and Honeycutt-Andemen index (HA index) parameters are also used to study the deformation behavior and bond-type of a group of atoms. Our results indicate that the influenced depths can be affected by the tip indentation and the gather of copper atoms. The gather of copper atoms can provide the resistance and strengthen the mechanical properties of Mg-Cu-Y material. On the other hand, our results indicate that the amorphous structure of Mg-Cu-Y metallic glasses cannot be transferred to crystal structure during nano-indentation process by analysis of HA index. For the cases of nano-scratch, two different scratch depth (5Å and 15Å) are investigated to understand the understand the depth effect. the scratch force-displacement curve is also obtained. As the same with nano-indentation results, the scratch force will increase because the gather of copper atoms and provide the resistance.
2

Effect of Vanadium Addition on Deformation and Fracture Behavior of DP1300 Dual Phase Steels

Zhou, Linfeng January 2018 (has links)
Advanced high strength steel (AHSS) provides a lightweight material solution in response to the stringent regulation on fuel economy and greenhouse gas emissions in the automotive industry. Dual phase (DP) steels that consist of a hard martensite phase embedded in a soft ferrite matrix are the most widely used AHSS due to their simple microstructure, robust thermo-mechanical processing and attractive mechanical properties. However, DP steels are prone to deform heterogeneously with strong strain partitioning between phases. The addition of Vanadium in DP steels can form nano-precipitates of vanadium carbonitrides (V (C,N)) that strengthen the ferrite and thus reduce the strain partitioning. This study considered the influence of V (C,N) on the deformation and damage behavior of ferrite-martensite DP1300 steels at the microscopic level. The hardness of the embedded ferrite and martensite regions are determined through nano-hardness testing. In-situ uniaxial tension tests were conducted on DP steels with similar martensite volume fractions within a scanning electron microscope (SEM) chamber. Microscopic-digital image correlation (µDIC) was then employed to analyze the local strain partitioning between ferrite and martensite. Local damage events such as void formation at ferrite martensite island interfaces and in the martensite islands were observed and rationalized with the µDIC results. X-ray computed tomography (XCT) were conducted to quantitatively analyze the microstructure damage. It was found that vanadium addition helps refine the microstructure and improve mechanical compatibility between the two phases. The overall ductility of the steel is enhanced especially in terms of post-uniform elongation and true strain to fracture. / Thesis / Master of Applied Science (MASc)
3

Effet de la composition et de la technique d'élaboration sur le comportement mécanique des verres metalliques base zirconium / Effect of composition and technique of production, on the mechanical behaviour of based-zirconium metallic glasses

Nowak, Sophie 02 November 2009 (has links)
Les verres métalliques sont des matériaux récents (≈ 50 ans), obtenus par refroidissement rapide d'un alliage en fusion. La structure amorphe de ces matériaux leur confère des propriétés particulières : une très grande résistance mécanique (limite à la rupture de l'ordre de 1,7 GPa pour des alliages base Zr), une déformation élastique de l'ordre de 2% mais pas ou peu de ductilité. Les compositions pouvant être élaborées à l’état amorphe, et, sous forme massive, sont en nombre limité. Le travail présenté dans ce manuscrit démontre la possibilité de consolider par frittage SPS (Spark Plasma Sintering), des poudres amorphes obtenues par atomisation (Фmoy.≈70 μm), tout en conservant majoritairement le caractère amorphe. L’optimisation de ce protocole, avec la composition Zr57Cu20Al10Ni8Ti5, a permis de retrouver le même comportement mécanique qu’un verre massif monolithe. Une cristallisation partielle du matériau se produit cependant aux points de contact des particules, mais pourrait être réduite en poursuivant le modèle de frittage esquissé dans ce manuscrit. Aux vues de ces résultats, la conception de nouvelles compositions, et leur élaboration sous forme de rubans, ont été menées. La caractérisation par nano-indentation permet d’estimer de manière fiable les propriétés mécaniques de ces alliages. Enfin, une nouvelle méthode d’évaluation du volume d’activation, qui est le volume élémentaire cisaillé initiant la déformation plastique, est présentée. Il s’agit de l’analyse statistique d’essais de pseudo-fluage en nano-indentation, réalisés à température ambiante. En conclusion, ce travail propose de nouvelles perspectives d’élaboration de verre métalliques sous forme massive dans une gamme de composition bien plus large / The metallic glasses are relatively new materials (≈ 50 years), produced by quenching a molten alloy. The amorphous structure of these materials gives them unique properties: very high strength (fracture stress is about 1.7 GPa for Zr based alloys), an elastic deformation reaching 2%, but little or no ductility. The compositions, which could produce both amorphous and bulk samples, are limited. The work, detailed in this manuscript, shows the possibility of sintering using SPS (Spark Plasma Sintering) amorphous powders obtained by atomization (Фaverage ≈ 70 microns). The result is a fully densified and near fully amorphous sample. The optimization of this technique, with the composition Zr57Cu20Al10Ni8Ti5, gave samples for which mechanical behaviour is close to the bulk metallic glass behaviour. However, partial crystallization of the material occurs, localized at the contact points of particles, but could be reduced by deepening the sintering model outlined in this manuscript. In view of these results, new compositions are designed, and the production of ribbons was conducted. The characterization by nano-indentation estimates reliably the mechanical properties of these alloys. Finally, a new method, evaluating the activation volume, which is the elementary volume initiating plastic deformation, is presented. This technique is a statistical analysis of pseudo-creep tests performed by nano-indentation, at room temperature. In conclusion, this work opens new perspectives to develop bulk samples in broad range of compositions
4

A hybrid approach to determining cornea mechanical properties using a combination of inverse finite element analysis and experimental techniques

Haghighi Abyaneh, Maryam January 2014 (has links)
It is of great clinical importance to predict the behaviour of the cornea in various diseases and post-surgical recovery. Therefore, a numerical model that is able to simulate the corneal behaviour, considering corneal material properties obtained from individuals is highly desirable. In this work a combined numerical-experimental technique has been developed that can characterize the mechanical properties of a cornea properties from two aspects: time-dependency and spatial variation. Initially, an analysis of the material properties of porcine corneas was performed to investigate the time-dependent behaviour of the cornea. A simple stress relaxation test was used to determine the viscoelastic properties of a cornea and a rheological model was built based on the Generalized Maxwell (GM) approach. A validation experiment using nano-indentation showed that an isotropic GM model was insufficient for describing the corneal time-dependent behaviour when exposed to a complex stress state. A technique was proposed that takes into account the microstructural composition of the cornea and is based on a combination of nano-indentation experiment, isotropic and transversely isotropic numerical models, and an inverse finite element method. The good agreement using this method suggests that this is a promising technique for measuring the time-dependent properties of the cornea. The spatial variation of the properties was then investigated. This time, the long term structural response of the cornea was targeted. A full field displacement response of a loaded cornea was evaluated from Optical Coherence Tomography (OCT) volume reconstructions of the cornea using Digital Volume Correlation (DVC). The inverse finite element method was employed with two models sequentially; first, a radially partitioned model and then a circumferentially partitioned model, in order to recover the elastic parameters in radial and circumferential directions. The good agreement using this method suggests that this is a promising and reliable technique for identifying the distribution of the corneal properties. In this research, we have shown that it is possible to determine the local time-dependent properties of the cornea and the in-depth (2D) distribution of the properties using the hybrid technique. This technique has the potential to be implemented in vivo. However, further work should focus on the feasibility of this technique in practice.
5

Apport de la microscopie à force atomique pour la détermination des propriétés mécaniquesélastiques du verre sous charges concentrées

Moysan, Claude 25 September 2009 (has links) (PDF)
La nanoindentation est aujourd'hui une technique bien implantée dans un laboratoire. Au début de ce travail, elle n'existait pas, du moins dans sa version de vulgarisation. On disposait de l'essai de dureté et des techniques d'observation du type microscopie à force atomique(AFM) .L'idée est d'associer les deux appareils pour déterminer à partir de l'observation d'un profil d'empreinte de dureté, les propriétés mécaniques élastiques du matériau indenté. On s'aperçoit alors que l'établissement de trois formules va aider à l'exploitation du profil. En comparant les modules de Young E obtenus par cette méthode avec ceux acquis par la technique des ultrasons, on sous estime la réalité mais en utilisant la définition du facteur de forme géométrique, nous sommes capables de déterminer la phase de fabrication du bourrelet et la phase de cisaillement lors d'un cycle de charge et de décharge. L'utilisation de l'indentation instrumentée est alors légitime pour mieux comprendre ce qu'il se passe lors de l'indentation, en particulier la technique de la mesure en continu de la raideur S(CSM). Lorsque nous comparons les valeurs obtenues avec celles de la propagation des ondes ultrasonores, nous surestimons la valeur réelle. Dans ce travail, nous sommes capables d'encadrer la valeur réelle du module de Young par une technique originale développée au LARMAUR et par la CSM. Le facteur de forme est un bon indicateur de présence de bandes de bourrelet ou de cisaillement en fonction de sa valeur par rapport à l'unité.
6

Finite Element Analysis on MLCC BME Processes

Huang, Tsun-yu 25 July 2009 (has links)
The mechanical and electrical properties of thin films have been become important and urgent in recent years, especially, the laminated structure made by films stacked over hundreds of layers. For example, the Multi-Layered Ceramic Capacitors (MLCCs) are such structures fabricated by one layer ceramic film interleaves with one layer electrode film repeatedly a hundred times. Thus, the advantages of MLCCs include small volume, mass product, and high capacity. That makes the MLCCs the necessary part of passive components. The Finite element method is adopted in the study. The model is built by the simulation program of ANSYS. After meshing and setting boundary conditions, the numerical process is performed. The numerical simulation was started first by applying a uniformly distributed pressure on the top of near hundred layers of MLCCs before sintering process with the bottom plate fixed. Then, the displacement and stress fields of MLCCs under five pressures were obtained and discussed. In order to visualize the results, the data of displacement and the stress fields were listed in Tables and plot in Figures. In addition to the MLCCs under vertically and uniformly distributed pressure, the slightly slant distributed pressure and gradient distributed pressure had been simulated. Next, the results of changing Young¡¦s modulus had also been received. It is found that the vertical distributed pressure and slant distributed pressure were not the main factor led to the side deformation. The lateral constraint of gradient distributed pressure would influence the deformation of the MLCCs significantly.
7

SYNTHESIS AND CHARACTERIZATION OF NANO-DIAMOND REINFORCED CHITOSAN FOR TISSUE ENGINEERING

2015 August 1900 (has links)
In recent years, tissue engineering has shown great potential in treatment of injured tissues which aims to create artificial structures for cells to regenerate new tissues for replacing the damaged and diseased ones. The selection of scaffold materials is one of the critical factors affecting tissue healing process. Among a wide range of scaffold materials, chitosan (CS) has been demonstrated as an ideal material due to its biocompatibility, nontoxicity, biodegradability, antibacterial activity and favorable strength and stiffness. However, its insufficient mechanical properties limits its feasibility and scope for clinical application, especially for bone scaffolds. The main purpose of the study is to explore the potential of incorporation of nanofillers into CS to enhance the mechanical properties for tissue engineering. In this work, nanodiamond (ND) is applied and studied due to its high surface to volume ratio, rich surface chemistry, high mechanical strength, and excellent biocompatibility. ND/CS nanocomposites with different diamond concentration from 1wt. % to 5wt. % were synthetized through a solution casting method. The microstructure and mechanical properties of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and nanoindentation. Compared with pristine CS, the addition of ND resulted in a dramatic improvement of mechanical properties, including a 239%, 276%, 321%, 333%, and 343% increase in Young’s modulus and 68%, 96%, 114%, 118%, and 127% increase in hardness when ND amount is 1wt. %, 2wt. %, 3wt. %, 4wt. %, and 5wt. %, respectively. The strong interaction between ND surface groups and chitosan matrix is of great importance in changing polymer structure and improving mechanical properties. The cell viability and cytotoxicity of the nanocomposite were also studied using MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. The results show that the addition of ND has no negative effect on cell viability and the nanocomposites have no cytotoxicity.
8

Précipitations de carbure de vanadium (fibre, interphase) dans des aciers / Precipitation Behaviors of VC fibre and Interphase Precipitation in V-containing steel

Chen, Meng-Yang 30 July 2013 (has links)
Le travail présenté dans cette thèse est consacré à la précipitation interphase dans les aciers microalliés au vanadium. Il s’agit principalement de mieux comprendre l’évolution des microstructures et des propriétés mécaniques résultantes à partir d’une double approche expérimentale et de modélisation. Les analyses effectuées conjointement en Microscopie Electronique en Transmission et en nanoindentation ont permis de mieux cerner les relations qui existent entre les paramètres microstructuraux de la précipitation interphase (taille moyenne des carbures, distances moyenne entre carbures et entre feuillets, morphologie des carbures) et les modifications de propriétés mécaniques locales induites dans les aciers à très haute résistance. Par ailleurs, nous avons développé un modèle original qui couple les cinétiques de transformation de phases à celle de la précipitation interphase. Ce modèle permet de décrire l’évolution des paramètres microstructuraux et les résultats obtenus sont en très bon accord avec les résultats expérimentaux. / The present thesis gives an overview of carbide aggregates (interphase precipitation and carbide fiber) in vanadium-alloyed steels, covering the aspects of microstructure, modeling, and mechanical properties. The microstructural features of different carbide aggregates by the use of microscopies, and the transition of carbide morphologies is discussed. A new model considering the ledge mechanism as well as austenite decomposition is subsequently proposed according to the observed microstructure. The sheet spacing, particle spacing, and interface velocity, can be calculated and show good agreements with experimental data. Finally, the effect of interphase-precipitated carbide distribution (sheet spacing, particle spacing, and carbide radius) on Orowan strengthening contribution is examined by nano-indentation. By the virtue of small indenter, the mechanical properties of single ferrite grain are able to be extracted.Keyword:
9

Caractérisation multi-échelle du tissu osseux : Application à l'ostéogénèse imparfaite / Multi-scalar caracterisation of bone tissu : Application on Osteogenesis Imperfecta

Echard, Agathe 21 November 2017 (has links)
L’ostéogénèse imparfaite(OI) est une maladie génétique rare qui se caractérise, entre autres, par une fragilité accrue des os. Des analyses du génome des patients atteints ont permis d’identifier les mutations qui déclenchaient ce principal symptôme. Pour le tissu osseux, la difficulté dans la compréhension de cette pathologie réside dans la structure multi-échelle du tissu osseux et dans son caractère de tissu vivant renouvelé par le remodelage osseux.Dans cette thèse, nous avons donc dans un premier temps étudié l’impact des différentes mutations sur la structure nanoscopique du tissu osseux de patients OI. Pour ce faire, une technique d’exploration des propriétés physico-chimiques a été développée. Plus particulièrement, nous avons pu mesurer l’apport de la spectroscopie Raman à l’étude du tissu osseux. Cela a permis d’identifier différentes conséquences sur le tissu osseux créées par des mutations touchant des protéines impliquées dans le métabolisme osseux. Ainsi, du point de vue de la spectroscopie Raman, trois groupes de mutations sont dissociables :• les mutations touchant directement le collagène et ses modifications (OI type génétique III, VII et VIII),• les mutations causant l’OI de type VI qui se caractérise par une hyper minéralisation due à une sous production de collagène,• les mutations causant l’OI de type XI qui se caractérise par un taux de substitution en carbonate plus important que la moyenne traduisant un taux de remodelage plus faible.Dans un second temps, l’aspect vivant du tissu osseux a été étudié avec l’étude de la phase de résorption du remodelage osseux. Il a ainsi été montré que les cellules osseuses qui résorbaient la matrice osseuse n’agissaient pas de manière aléatoire, mais qu’elles ciblaient les zones aux propriétés mécaniques et minérales les plus faibles. Ce comportement étudié d’abord sur du tissu osseux adulte sain a été aussi observé sur les os des patients souffrant d’OI. La pathologie n’a pas modifié qualitativement ce comportement. / Osteogenesis imperfecta (OI) is a rare genetic disease, whose main feature is more brittle bone. Genetic analysis identified mutations making the bone more prone to fracture. As the bone is a multistructrural material, while also being a living tissue, the symptoms and consequences of the disease are numerous. During this thesis, the focus was made on a first approach on the differences of nanostructures between the various mutations causing OI. More specifically, a new use of Raman spectroscopy was made in order to study the collagenic matrix as well as the mineral component. It was found that mutations could be gathered in three groups:• Mutations implied directly in the collagen synthesis and in its early modification (OI genetical type III, VII et VIII),• Mutations implied directly in the mineralization of the collagenic matrix, with an hypermineralization of this matrix (OI genetical type VII),• Mutations causing OI genetical type XI, characterized by a high rate of carbonate substitution, implying a low remodeling rate.On the other hand, the living aspect of bone tissue was studied, with a focus made on the resorption phase of the remodeling cycle. It was found on healthy adults bone that the cells were not behaving randomly, but target osteons with lower mechanical and mineral properties. Moreover, the behavior of those cells is not altered by OI: it was found that the cells had the same not-random behavior on bone of OI patients.
10

Caractérisation du comportement mécanique de surfaces hyper-déformées par des phénomènes de contact / Characterization of the mechanical behavior of hyper-deformed surfaces induced by contact effects

Tumbajoy Spinel, David 09 November 2016 (has links)
Dans l’industrie, les traitements mécaniques de surface métalliques permettent d’améliorer les conditions de service des pièces mécaniques. Les effets de contact de ces types de procédés engendrent une forte déformation plastique du matériau et par conséquent une transformation microstructurale en sous-surface. Cette transformation se manifeste dans le raffinement progressif de la microstructure dans une couche de quelques dizaines de micromètres. Celle-ci est souvent dénommé "surface tribologiquement transformée" (en anglais : Tribologically Transformed Surface - TTS). Une telle transformation microstructurale conduit à une augmentation des propriétés mécaniques en extrême surface et rend le matériau plus résistant aux conditions de frottement, usure et fatigue.Dans le cadre de cette étude, deux procédures de transformation microstructurale ont été employées sur un matériau modèle : le fer-α. Pour la première technique (grenaillage), la surface est impactée de façon répétitive avec des billes métalliques projetées à grande vitesse. Concernant la deuxième méthode (micro-percussion), la surface est impactée répétitivement à un endroit précis avec un indenteur conique rigide.L’objet de ce projet se centre sur trois aspects principaux : (i) déterminer les gradients mécaniques et microstructuraux induits sur les deux types de surfaces transformées (grenaillage et micro-percussion), (ii) établir un lien quantitatif entre les mesures faites par deux types d’essais micromécaniques (nano-indentation et micro-compression de piliers) et (iii) mettre en évidence les effets microstructuraux impliqués (taille de grain, densité de dislocations, etc...) dans l’augmentation des propriétés mécaniques par hyper-déformation de surfaces. / The mechanical surface treatments confer better local mechanical properties against wear or fatigue service conditions. In the case of impact-based treatments, the material is exposed to repeated mechanical loadings, producing a severe plastic deformation in the near-surface. It leads to a local and progressive refinement of the microstructure into the affected zone, commonly known as Tribologically Transformed Surface (TTS). For this project, two mechanical surface treatments are used in a model material (pure α-iron): (i) shot-peening and (ii) micro-percussion.The resulting surfaces are characterized by a mechanical property gradient in-depth as a consequence of the microstructural transformation over a few tens of microns. Nowadays, it is well-known that this rise of local mechanical properties could improve the service lifetime of materials. However, a simple micro-hardness test is not quite enough to quantify precisely the engendered variation of mechanical properties and understand the influence of several microstructural effects. For this purpose, two micro-mechanical tests are considered: (i) nano-indentation and (ii) in situ micro-pillar compression.The main issue of this work is to characterize the mechanically-induced transformed surfaces and correlate the mechanical properties gradients with the local microstructural evolutions. Indeed, three main goals are considered: (i) quantify the mechanical and microstructural gradients induced by the surface treatments (shot-peening and micro-percussion), (ii) correlate the results obtained by the means of both mechanical tests (nano-indentation and micro-pillar compression) and finally (iii) investigate the influence of several microstructural effects related with the graded strengthening of hyper-deformed surfaces.

Page generated in 0.1493 seconds