• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Real-Time and Data-Driven Operation Optimization and Knowledge Discovery for an Enterprise Information System

Duan, Qing January 2014 (has links)
<p>An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions. </p><p>This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods. </p><p> </p><p>On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.</p><p>In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.</p><p>We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,</p><p>and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy. </p><p>In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.</p> / Dissertation
2

Otimização de operação de rede por um modelo híbrido (hidrodinâmico-genético). / Optimization of hydraulic networks through a hybrid model (hydrodynamic - genetic).

Diniz, Victor Emanuel Mello de Guimarães 23 April 2004 (has links)
Este trabalho apresenta um modelo híbrido, que após calcular as cargas e as vazões para o regime permanente e para o regime extensivo, utiliza um algoritmo genético para otimizar o controle operacional de redes hidráulicas. Para se calcular os regimes permanente e extensivo utilizou-se o Método Matricial. O Algoritmo Genético utilizou números binários. A função objetivo minimiza a soma das potências hidráulicas dissipadas na rede como um todo de todos os períodos de cálculo do regime extensivo. A parte do modelo híbrido que se refere ao cálculo hidráulico está funcionando a contento, pois os valores obtidos pelo modelo para as duas redes utilizadas como exemplo neste projeto estão próximos dos valores originais obtidos da literatura pesquisada. A parte do modelo híbrido que se refere ao algoritmo genético está funcionando a contento, pois os valores da função objetivo obtidos pelo modelo convergiram em todos os cálculos nos quais o elitismo foi utilizado. A otimização proposta neste trabalho serve para ser utilizada em redes de abastecimento que apresentem problemas operacionais e que precisem ser resolvidos com a instalação de válvulas ou que tenham válvulas instaladas. / This report presents a hybrid model that calculates the heads and flows of a hydraulic network system and then uses a genetic algorithm to optimize the operational control of the hydraulic network. To calculate the steady flow and the extensive period it was used the Matrix Method. The GA used binary numbers. The objective function minimizes the sum of the dissipated hydraulic power in the whole network of all calculated periods during the day. The hybrid model part that refers to the hydraulic calculation is working well, because the values calculated by the model applied to the networks used as examples are similar to the ones obtained from the technical literature. The hybrid model part that refers to the GA is working well, because the objective function values calculated by the model converged whenever the elitism was used. The proposed optimization of this work is to be used in hydraulic networks that present operational problems that need to be solved either installing valves or having installed valves.
3

Otimização de operação de rede por um modelo híbrido (hidrodinâmico-genético). / Optimization of hydraulic networks through a hybrid model (hydrodynamic - genetic).

Victor Emanuel Mello de Guimarães Diniz 23 April 2004 (has links)
Este trabalho apresenta um modelo híbrido, que após calcular as cargas e as vazões para o regime permanente e para o regime extensivo, utiliza um algoritmo genético para otimizar o controle operacional de redes hidráulicas. Para se calcular os regimes permanente e extensivo utilizou-se o Método Matricial. O Algoritmo Genético utilizou números binários. A função objetivo minimiza a soma das potências hidráulicas dissipadas na rede como um todo de todos os períodos de cálculo do regime extensivo. A parte do modelo híbrido que se refere ao cálculo hidráulico está funcionando a contento, pois os valores obtidos pelo modelo para as duas redes utilizadas como exemplo neste projeto estão próximos dos valores originais obtidos da literatura pesquisada. A parte do modelo híbrido que se refere ao algoritmo genético está funcionando a contento, pois os valores da função objetivo obtidos pelo modelo convergiram em todos os cálculos nos quais o elitismo foi utilizado. A otimização proposta neste trabalho serve para ser utilizada em redes de abastecimento que apresentem problemas operacionais e que precisem ser resolvidos com a instalação de válvulas ou que tenham válvulas instaladas. / This report presents a hybrid model that calculates the heads and flows of a hydraulic network system and then uses a genetic algorithm to optimize the operational control of the hydraulic network. To calculate the steady flow and the extensive period it was used the Matrix Method. The GA used binary numbers. The objective function minimizes the sum of the dissipated hydraulic power in the whole network of all calculated periods during the day. The hybrid model part that refers to the hydraulic calculation is working well, because the values calculated by the model applied to the networks used as examples are similar to the ones obtained from the technical literature. The hybrid model part that refers to the GA is working well, because the objective function values calculated by the model converged whenever the elitism was used. The proposed optimization of this work is to be used in hydraulic networks that present operational problems that need to be solved either installing valves or having installed valves.
4

Nuclear Renewable Integrated Energy System Power Dispatch Optimization forTightly Coupled Co-Simulation Environment using Deep Reinforcement Learning

Sah, Suba January 2021 (has links)
No description available.
5

Gerenciamento inteligente da recarga de veículos elétricos otimizando a operação do sistema elétrico de potência

Saldanha, John Jefferson Antunes 28 September 2017 (has links)
Submitted by Marlucy Farias Medeiros (marlucy.farias@unipampa.edu.br) on 2017-10-31T16:36:39Z No. of bitstreams: 1 John Jefferson Antunes Saldanha - 2017.pdf: 2295770 bytes, checksum: 7d9b5b6835d3e02633dca3155dd44fe7 (MD5) / Approved for entry into archive by Marlucy Farias Medeiros (marlucy.farias@unipampa.edu.br) on 2017-10-31T18:24:47Z (GMT) No. of bitstreams: 1 John Jefferson Antunes Saldanha - 2017.pdf: 2295770 bytes, checksum: 7d9b5b6835d3e02633dca3155dd44fe7 (MD5) / Made available in DSpace on 2017-10-31T18:24:47Z (GMT). No. of bitstreams: 1 John Jefferson Antunes Saldanha - 2017.pdf: 2295770 bytes, checksum: 7d9b5b6835d3e02633dca3155dd44fe7 (MD5) Previous issue date: 2017-09-28 / Uma difusão considerável p elo uso dos veículos elétricos plug-in (VEPs) tem sido promovida, de modo a reduzir as emissões poluentes dos veículos movidos a combustão, bem como preservar as fontes de energia fóssil. Entretanto, cabe ressaltar que os VEPs necessitam se conectar a rede elétrica para recarregar suas baterias. Nesse contexto, caso uma quantidade significativa de veículos elétricos plug-in solicitem recarga ao mesmo tempo, a operação do sistema elétrico de potência (SEP) será comprometida. Em contrapartida, os VEPs também podem auxiliar a rede elétrica através do controle da taxa de recarga e injeção de energia ativa. Assim, é importante realizar o controle da recarga dos VEPs. Dessa forma, este trabalho propõe um sistema inteligente fundamentado em duas interfaces para controlar a taxa de recarga dos VEPs. A primeira interface visa controlar a taxa de recarga de uma frota de veículos com base em um controlador lógico fuzzy projetado e posteriormente ajustado. Nesta interface, buscam-se atender os requisitos do consumidor. Na segunda, gerenciam-se diversas frotas de VEPs visando minimizar perdas de energia e desvios de tensão na rede elétrica. Os resultados da primeira interface mostram que ambos os controladores projetado e ajustado respondem ao cálculo da taxa de recarga levando em consideração as informações inseridas pelo consumidor. Em adição, a resposta do controlador ajustado é mais próxima da resposta desejada, comparando com o controlador projetado. Os resultados da segunda interface mostram que o método de otimização reduziu as perdas de energia elétrica e os desvios de tensão no sistema teste estudado. Concomitantemente, a energia entregue para os VEPs aumentou de maneira significativa. Desta forma, com o sistema desenvolvido, espera-se reduzir o impacto no sistema elétrico de potência e otimizar sua operação, beneficiando a concessionária local, a rede elétrica e o consumidor. / In the present work we investigated experimentally and theoretically the photophysical characterization of organic compounds of the type benzothiazoles, targeting applications in optoelectronic devices, mainly in organic light emitting diodes and photoelectric devices. The study was developed to identify the optical and structural properties of the compounds and the effect of the addition of an amine radical on the ring PhO (benzene-bound benzene) of the benzothiazole compound. Other variations were analyzed, such as changes in the positions of the amine radical added to said compound and absence of the hydroxyl radical. Absorption and photoluminescence experiments were carried out with the purpose of verifying the excitation and fluorescence energies of the compounds, as well as Stokes displacement. The photophysical characterization was also investigated theoretically by means of an ab initio or first principles computational model based on the Density Functional Theory (DFT), implemented in the Gaussian® program, which uses quantum mechanics to calculate the molecular structures and their vibrational properties. We investigated the molecular geometric structure, obtaining the interatomic distances, structure of electronic orbitals, diagrams of energy bands, molecular vibrations and frequency of vibrational modes. By means of Raman spectroscopy, the frequencies of the active Raman vibrational modes were obtained, allowing the comparison with the theoretical results of the simulations. The compounds 4HBS, 4HBSN and 5HBS have their first theoretical characterization from the study of this dissertation.

Page generated in 0.125 seconds