• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of high-performance operational amplifiers using an embedded compensation technique

Ziazadeh, Ramsin M. 04 December 1997 (has links)
Graduation date: 1998
2

Design and modelling of CMOS operational amplifiers.

January 1998 (has links)
by Chung-Yuk Or. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 95-[98]). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Fully Differential CMOS Operational Amplifier Design --- p.4 / Chapter 2.1 --- Wide-Swing Current Mirror --- p.5 / Chapter 2.2 --- Wide-Swing Biasing Network --- p.8 / Chapter 2.3 --- Fully differential folded-cascode operational amplifier --- p.13 / Chapter 2.3.1 --- Small-Signal Analysis --- p.16 / Chapter 2.4 --- Gain-boost technique --- p.18 / Chapter 2.4.1 --- Frequency Response --- p.24 / Chapter 2.5 --- Common-Mode Feedback Network --- p.26 / Chapter 2.5.1 --- Continuous-Time CMFB Circuit --- p.27 / Chapter 2.5.2 --- Discrete-Time CMFB circuit --- p.33 / Chapter 2.6 --- Design Flow of the Operational Amplifier --- p.35 / Chapter 3 --- Physical Design of the Operational Amplifier --- p.39 / Chapter 3.1 --- Layout Level Design --- p.40 / Chapter 3.2 --- Layout Techniques --- p.42 / Chapter 3.3 --- Input Protection Circuitry --- p.47 / Chapter 4 --- Simulation Results --- p.49 / Chapter 4.1 --- Simulation of the Operational Amplifier --- p.49 / Chapter 4.2 --- Simulation of Auxiliary Amplifiers --- p.57 / Chapter 4.3 --- Simulation of the Common-Mode Feedback Circuit --- p.62 / Chapter 5 --- Measurement Results --- p.70 / Chapter 5.1 --- Transient Response Measurement --- p.70 / Chapter 5.2 --- Frequency Response Measurement --- p.74 / Chapter 5.3 --- Power Consumption Measurement --- p.78 / Chapter 5.4 --- Performance Evaluation --- p.81 / Chapter 6 --- Layout Driven Operational Amplifiers Macromodelling --- p.82 / Chapter 6.1 --- Motivations --- p.83 / Chapter 6.2 --- Methodology --- p.84 / Chapter 6.3 --- Macromodelling the operational amplifier --- p.85 / Chapter 6.4 --- Simulation Results --- p.88 / Chapter 6.5 --- Conclusions --- p.92 / Chapter 7 --- Conclusions --- p.93 / Bibliography --- p.95 / A Layout Diagrams and Chip Micrograph --- p.99
3

Highly linear, rail-to-rail ICMR, low voltage CMOS operational amplifer

Murty, Anjali 05 1900 (has links)
No description available.
4

A 1-volt CMOS wide dynamic Range operational amplifier

Blalock, Benjamin Joseph 12 1900 (has links)
No description available.
5

Design and simulation of an improved operational amplifier for use in radiation environments

Ghassemi, Hamed, 1964- January 1989 (has links)
The effects of radiation on an operational amplifier were investigated through simulation. The μA 741 was simulated using Spice. Under normal conditions the 741 had the following properties: offset Voltage (Vos) of 0.8 mV, bias current (IB) of 27 nA, offset current (Ios) of 1 nA, and an open loop gain (A0.1.) of 112 dB. When exposed to neutron fluence of 5 x 10¹³ n/cm², these parameters changed to offset voltage of 45 mV, bias current of 1500 nA, offset current of 500 nA, and an open loop gain of 66 dB. A new circuit is proposed that provides improvements in the above parameters. The modified circuit gives a Vos of 3 mV, IB of 200 nA, Ios of 34 nA and A0.1. of 93 dB following exposure to a neutron fluence of 5 x 10¹³n/cm².
6

Operational transconductance amplifier with a rail-to-rail constant transconductance input stage.

January 2002 (has links)
Chan Shek-Hang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 94-97). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Table of Contents --- p.v / List of Figures --- p.ix / List of Tables --- p.xiii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Overview --- p.1 / Chapter 1.2 --- Significance of the research --- p.2 / Chapter 1.3 --- Objectives --- p.3 / Chapter 1.4 --- Thesis outline --- p.4 / Chapter Chapter 2 --- Background theory --- p.5 / Chapter 2.1 --- Introduction --- p.5 / Chapter 2.2 --- Electrical properties of MOS transistors --- p.5 / Chapter 2.2.1 --- Strong inversion --- p.5 / Chapter 2.2.2 --- Weak inversion --- p.6 / Chapter 2.2.3 --- Moderate inversion --- p.8 / Chapter 2.2.4 --- The transistors biased in this work --- p.8 / Chapter 2.3 --- Rail-to-rail signals --- p.8 / Chapter 2.4 --- Rail-to-rail operational amplifier --- p.10 / Chapter 2.4.1 --- Rail-to-rail differential input pairs --- p.10 / Chapter 2.4.1.1 --- Principle --- p.10 / Chapter 2.4.1.2 --- Two stage operational amplifier --- p.13 / Chapter 2.4.2 --- Folded-cascode gain stage --- p.14 / Chapter 2.5 --- The nature of operational amplifier distortion --- p.16 / Chapter 2.5.1 --- The total harmonic distortion --- p.17 / Chapter Chapter 3 --- Constant transconductance rail-to-rail input stage --- p.20 / Chapter 3.1 --- Introduction --- p.20 / Chapter 3.2 --- Review of constant-gm input stage --- p.20 / Chapter 3.2.1 --- Rail-to-rail input stages with current-based gm control --- p.20 / Chapter 3.2.1.1 --- gm controlled by three-times current mirror --- p.21 / Chapter 3.2.1.2 --- gm controlled by square root current control --- p.23 / Chapter 3.2.1.3 --- gm controlled by using current switches only --- p.25 / Chapter 3.2.2 --- Rail-to-rail input stages with voltage-based gm control --- p.28 / Chapter 3.2.2.1 --- gm controlled by an ideal zener diode --- p.28 / Chapter 3.2.2.2 --- gm controlled by two diodes --- p.30 / Chapter 3.2.2.3 --- gm controlled by an electronic zener --- p.31 / Chapter 3.3 --- Conclusion --- p.32 / Chapter Chapter 4 --- Proposed constant transconductance rail-to-rail input stage --- p.34 / Chapter 4.1 --- Introduction --- p.34 / Chapter 4.2 --- Principle of the conventional input stage --- p.35 / Chapter 4.2.1 --- Translinear circuit --- p.35 / Chapter 4.3 --- Previous work --- p.36 / Chapter 4.3.1 --- Input bias circuit --- p.36 / Chapter 4.3.2 --- Weak inversion operation --- p.38 / Chapter 4.3.3 --- Power up problem --- p.43 / Chapter 4.4 --- Operational transconductance amplifier with proposed input biased stage --- p.47 / Chapter 4.4.1 --- Proposed input biased stage architecture --- p.47 / Chapter 4.4.2 --- Proposed input biased stage with 2 gm control circuits --- p.50 / Chapter 4.4.3 --- OTA with proposed input biased stage --- p.51 / Chapter Chapter 5 --- Simulation Results --- p.54 / Chapter 5.1 --- Introduction --- p.54 / Chapter 5.2 --- DC bias simulation --- p.54 / Chapter 5.2.1 --- Total transconductance variation --- p.54 / Chapter 5.2.2 --- Power consumption --- p.56 / Chapter 5.3 --- AC simulation --- p.56 / Chapter 5.3.1 --- Open-loop gain --- p.57 / Chapter 5.3.2 --- Gain-bandwidth product --- p.59 / Chapter 5.3.3 --- Phase margin --- p.59 / Chapter 5.4 --- Transient simulation --- p.60 / Chapter 5.4.1 --- Voltage follower --- p.60 / Chapter 5.4.2 --- Total harmonic distortion --- p.62 / Chapter 5.4.3 --- Step response --- p.65 / Chapter 5.5 --- Conclusion --- p.67 / Chapter Chapter 6 --- Layout Consideration --- p.68 / Chapter 6.1 --- Introduction --- p.68 / Chapter 6.2 --- Substrate tap --- p.68 / Chapter 6.3 --- Input protection circuitry --- p.69 / Chapter 6.4 --- Die micrographs of the OTA --- p.71 / Chapter Chapter 7 --- Measurement Results --- p.74 / Chapter 7.1 --- Introduction --- p.74 / Chapter 7.2 --- DC bias measurement results --- p.74 / Chapter 7.2.1 --- Total transconductance variation --- p.74 / Chapter 7.2.2 --- Power consumption --- p.77 / Chapter 7.3 --- AC measurement results --- p.78 / Chapter 7.3.1 --- Open-loop gain --- p.78 / Chapter 7.3.2 --- Gain-bandwidth product --- p.81 / Chapter 7.3.3 --- Phase margin --- p.81 / Chapter 7.4 --- Transient measurement result --- p.82 / Chapter 7.4.1 --- Voltage follower --- p.82 / Chapter 7.4.2 --- Total harmonic distortion --- p.85 / Chapter 7.4.3 --- Step response --- p.87 / Chapter 7.5 --- Conclusion --- p.88 / Chapter Chapter 8 --- Conclusion --- p.90 / Chapter 8.1 --- Contribution --- p.90 / Chapter 8.2 --- Further development --- p.91 / Chapter Chapter 9 --- Appendix --- p.92 / Chapter Chapter 10 --- Bibliography --- p.94
7

The Design of High-Frequency Continuous-Time Integrated Analog Signal Processing Circuits

Wu, Pan 01 January 1993 (has links)
High-performance, high-frequency operational transconductance amplifiers (OTAs) are very important elements in the design of high-frequency continuous-time integrated analog signal processing circuits, because resistors, inductors, integrators, mutators, buffers, multipliers, and filters can be built by OTAs and capacitors. The critical considerations for OTA design are linearity, tuning, frequency response, output impedance, power supply rejection (PSR) and common-mode rejection (CMR). For linearity considerations, two different methods are proposed. One uses cross-coupled pairs (CMOS or NMOS), producing OTAs with very high linearity but either the input range is relatively small or the CMR to asymmetrical inputs is poor. Another employs multiple differential pairs (current addition or subtraction), producing OTAs with high linearity over a very large input range. So, there are tradeoffs among the critical considerations. For different applications, different OTAs should be selected. For consideration of frequency response, the first reported GaAs OTA was designed for achieving very-high-frequency performance, instead of using AC compensation techniques. GaAs is one of the fastest available technologies, but it was new and less mature than silicon when we started the design in 1989. So, there were several issues, such as low output impedance, no P-channel devices, and Schottky clamp. To overcome these problems, new techniques are proposed, and the designed OTA has comparable performance to a CMOS OTA. For PSR and CMR considerations, a fully balanced circuit structure is employed with a common-mode feedback (CMF) circuit used to stabilize the DC output voltages. To reduce the interaction of the operation of CMF and tuning of OTAs, three improved versions of the CMF circuits used in operational amplifiers are proposed. With the designed OTAs, a I GHz GaAs inductor with small parasitics is designed using the proposed procedure to reduce high-frequency effects. Two CMOS high-order, high-frequency filters are designed: one in cascade structure and one in LC ladder form. Also, a 200 MHz third-order elliptic GaAs filter is designed with special consideration of very-high-frequency parasitics. All circuits were fabricated and measured. The experimental results were used to verify the designs.

Page generated in 0.129 seconds