Spelling suggestions: "subject:"pinion summarized"" "subject:"pinion summarize""
1 |
Semantic-Based Approach to Supporting Opinion SummarizationChen, Yen-Ming 20 July 2006 (has links)
With the rapid expansion of e-commerce, the Web has become an excellent source for
gathering customer opinions (or so-called customer reviews). Customer reviews are
essential for merchants or product manufacturers to understand general responses of
customers on their products for product or marketing campaign improvement. In
addition, customer reviews can enable merchants better understand specific
preferences of individual customers and facilitates making effective marketing
decisions. Prior data mining research mainly concentrates on analyzing customer
demographic, attitudinal, psychographic, transactional, and behavioral data for
supporting customer relationship management and marketing decision making and did
not pay attention to the use of customer reviews as additional source for marketing
intelligence. Thus, the purpose of this research is to develop an efficient and effective
opinion summarization technique. Specifically, we will propose a semantic-based
product feature extraction technique (SPE) which aims at improving the existing
product feature extraction technique and is desired to enhance the overall opinion
summarization effectiveness.
|
2 |
Sumarização automática de opiniões baseada em aspectos / Automatic aspect-based opinion summarizationCondori, Roque Enrique López 24 August 2015 (has links)
A sumarização de opiniões, também conhecida como sumarização de sentimentos, é a tarefa que consiste em gerar automaticamente sumários para um conjunto de opiniões sobre uma entidade específica. Uma das principais abordagens para gerar sumários de opiniões é a sumarização baseada em aspectos. A sumarização baseada em aspectos produz sumários das opiniões para os principais aspectos de uma entidade. As entidades normalmente referem-se a produtos, serviços, organizações, entre outros, e os aspectos são atributos ou componentes das entidades. Nos últimos anos, essa tarefa tem ganhado muita relevância diante da grande quantidade de informação online disponível na web e do interesse cada vez maior em conhecer a avaliação dos usuários sobre produtos, empresas, pessoas e outros. Infelizmente, para o Português do Brasil, pouco se tem pesquisado nessa área. Nesse cenário, neste projeto de mestrado, investigou-se o desenvolvimento de alguns métodos de sumarização de opiniões com base em aspectos. Em particular, foram implementados quatro métodos clássicos da literatura, extrativos e abstrativos. Esses métodos foram analisados em cada uma de suas fases e, como consequência dessa análise, produziram-se duas propostas para gerar sumários de opiniões. Essas duas propostas tentam utilizar as principais vantagens dos métodos clássicos para gerar melhores sumários. A fim de analisar o desempenho dos métodos implementados, foram realizados experimentos em função de três medidas de avaliação tradicionais da área: informatividade, qualidade linguística e utilidade do sumário. Os resultados obtidos mostram que os métodos propostos neste trabalho são competitivos com os métodos da literatura e, em vários casos, os superam. / Opinion summarization, also known as sentiment summarization, is the task of automatically generating summaries for a set of opinions about a specific entity. One of the main approaches to generate opinion summaries is aspect-based opinion summarization. Aspect-based opinion summarization generates summaries of opinions for the main aspects of an entity. Entities could be products, services, organizations or others, and aspects are attributes or components of them. In the last years, this task has gained much importance because of the large amount of online information available on the web and the increasing interest in learning the user evaluation about products, companies, people and others. Unfortunately, for Brazilian Portuguese language, there are few researches in that area. In this scenario, this master\'s project investigated the development of some aspect-based opinion summarization methods. In particular, it was implemented four classical methods of the literature, extractive and abstractive ones. These methods were analyzed in each of its phases and, as a result of this analysis, it was produced two proposals to generate summaries of opinions. Both proposals attempt to use the main advantages of the classical methods to generate better summaries. In order to analyze the performance of the implemented methods, experiments were carried out according to three traditional evaluation measures: informativeness, linguistic quality and usefulness of the summary. The results show that the proposed methods in this work are competitive with the classical methods and, in many cases, they got the best performance.
|
3 |
Sumarização automática de opiniões baseada em aspectos / Automatic aspect-based opinion summarizationRoque Enrique López Condori 24 August 2015 (has links)
A sumarização de opiniões, também conhecida como sumarização de sentimentos, é a tarefa que consiste em gerar automaticamente sumários para um conjunto de opiniões sobre uma entidade específica. Uma das principais abordagens para gerar sumários de opiniões é a sumarização baseada em aspectos. A sumarização baseada em aspectos produz sumários das opiniões para os principais aspectos de uma entidade. As entidades normalmente referem-se a produtos, serviços, organizações, entre outros, e os aspectos são atributos ou componentes das entidades. Nos últimos anos, essa tarefa tem ganhado muita relevância diante da grande quantidade de informação online disponível na web e do interesse cada vez maior em conhecer a avaliação dos usuários sobre produtos, empresas, pessoas e outros. Infelizmente, para o Português do Brasil, pouco se tem pesquisado nessa área. Nesse cenário, neste projeto de mestrado, investigou-se o desenvolvimento de alguns métodos de sumarização de opiniões com base em aspectos. Em particular, foram implementados quatro métodos clássicos da literatura, extrativos e abstrativos. Esses métodos foram analisados em cada uma de suas fases e, como consequência dessa análise, produziram-se duas propostas para gerar sumários de opiniões. Essas duas propostas tentam utilizar as principais vantagens dos métodos clássicos para gerar melhores sumários. A fim de analisar o desempenho dos métodos implementados, foram realizados experimentos em função de três medidas de avaliação tradicionais da área: informatividade, qualidade linguística e utilidade do sumário. Os resultados obtidos mostram que os métodos propostos neste trabalho são competitivos com os métodos da literatura e, em vários casos, os superam. / Opinion summarization, also known as sentiment summarization, is the task of automatically generating summaries for a set of opinions about a specific entity. One of the main approaches to generate opinion summaries is aspect-based opinion summarization. Aspect-based opinion summarization generates summaries of opinions for the main aspects of an entity. Entities could be products, services, organizations or others, and aspects are attributes or components of them. In the last years, this task has gained much importance because of the large amount of online information available on the web and the increasing interest in learning the user evaluation about products, companies, people and others. Unfortunately, for Brazilian Portuguese language, there are few researches in that area. In this scenario, this master\'s project investigated the development of some aspect-based opinion summarization methods. In particular, it was implemented four classical methods of the literature, extractive and abstractive ones. These methods were analyzed in each of its phases and, as a result of this analysis, it was produced two proposals to generate summaries of opinions. Both proposals attempt to use the main advantages of the classical methods to generate better summaries. In order to analyze the performance of the implemented methods, experiments were carried out according to three traditional evaluation measures: informativeness, linguistic quality and usefulness of the summary. The results show that the proposed methods in this work are competitive with the classical methods and, in many cases, they got the best performance.
|
4 |
Mineração de opiniões em aspectos em fontes de opiniões fracamente estruturadas / Aspect-based opinion mining in weakly structured opinion sourcesSápiras, Leonardo Augusto January 2015 (has links)
Na WEB, são encontradas postagens sobre assuntos variados, notícias de celebridades, produtos e serviços. Tal conteúdo contém emoções positivas, negativas ou neutras. Minerar o sentimento da população sobre candidatos a eleições e seus aspectos em mídias virtuais pode ser realizado por meio de técnicas de Mineração de Opiniões. Existem soluções para fontes de opinião fortemente estruturadas, tais como revisões de produtos e serviços, no entanto o problema que se apresenta é realizar a mineração de opiniões em nível de aspecto em fontes de opiniões fracamente estruturadas. Além de avaliar conceitos relacionados à mineração de opiniões, o presente trabalho descreve a realização de um estudo de caso, o qual analisa fontes de opiniões fracamente estruturadas e propõe uma abordagem para minerar opiniões em nível de aspecto, utilizando como fontes de opinião comentários de leitores de jornais. O estudo de caso contribui (i) na concepção de uma abordagem para identificação da opinião em nível de aspecto sobre entidades eleitorais em comentários de notícias políticas, (ii) na aplicação de um método baseado em aprendizagem de máquina para classificar a opinião sobre entidades e seus aspectos em três classes (positivo, negativo e neutro), (iii) na representação da sumarização visual de opinião sobre entidades e seus aspectos. São descritos experimentos para identificar comentários que mencionam os aspectos saúde e educação, utilizando co-ocorrência, em que foram obtidos resultados satisfatórios utilizando as técnicas Expected Mutual Information Measure e phi-squared. Já para a polarização de sentenças, são realizados experimentos com duas abordagens de classificação: uma que classifica sentenças em três classes e outra que realiza classificações binárias em duas etapas. / In the WEB are found posts about various subjects like celebrity news, products and services. Such content has positive, negative or neutral emotions. Mining the population’s sentiments about elections candidates and their aspects in virtual media can be performed using Opinion Mining techniques. There are solutions for highly structured opinion sources, such as reviews of products and services, however the problem is how to perform aspect-based opinion mining in less structured opinions sources. Besides evaluating concepts related to opinion mining, this work describes a case study which analyzes weakly structured sources and proposes an approach to mine aspect-based opinions using as sources of sentiment reviews of newspaper readers. The case study contributes (i) designing an approach to identify the aspect-based opinion about electoral candidates in news political comments, (ii) to the application of a machine learning-based method to classify the opinion about entities and their aspects in three classes (positive, negative and neutral) (iii) to the representation of a visual summarization review of entities and their aspects. It describes experiments to identify comments about health and education aspects using co-occurrence where satisfactory results were obtained using the techniques Expected Mutual Information Measure and phi-squared. In which regards sentences polarization, experiments are performed with two classification approaches, one that classifies sentences in three classes and another that performs binary classifications in two stages.
|
5 |
Mineração de opiniões em aspectos em fontes de opiniões fracamente estruturadas / Aspect-based opinion mining in weakly structured opinion sourcesSápiras, Leonardo Augusto January 2015 (has links)
Na WEB, são encontradas postagens sobre assuntos variados, notícias de celebridades, produtos e serviços. Tal conteúdo contém emoções positivas, negativas ou neutras. Minerar o sentimento da população sobre candidatos a eleições e seus aspectos em mídias virtuais pode ser realizado por meio de técnicas de Mineração de Opiniões. Existem soluções para fontes de opinião fortemente estruturadas, tais como revisões de produtos e serviços, no entanto o problema que se apresenta é realizar a mineração de opiniões em nível de aspecto em fontes de opiniões fracamente estruturadas. Além de avaliar conceitos relacionados à mineração de opiniões, o presente trabalho descreve a realização de um estudo de caso, o qual analisa fontes de opiniões fracamente estruturadas e propõe uma abordagem para minerar opiniões em nível de aspecto, utilizando como fontes de opinião comentários de leitores de jornais. O estudo de caso contribui (i) na concepção de uma abordagem para identificação da opinião em nível de aspecto sobre entidades eleitorais em comentários de notícias políticas, (ii) na aplicação de um método baseado em aprendizagem de máquina para classificar a opinião sobre entidades e seus aspectos em três classes (positivo, negativo e neutro), (iii) na representação da sumarização visual de opinião sobre entidades e seus aspectos. São descritos experimentos para identificar comentários que mencionam os aspectos saúde e educação, utilizando co-ocorrência, em que foram obtidos resultados satisfatórios utilizando as técnicas Expected Mutual Information Measure e phi-squared. Já para a polarização de sentenças, são realizados experimentos com duas abordagens de classificação: uma que classifica sentenças em três classes e outra que realiza classificações binárias em duas etapas. / In the WEB are found posts about various subjects like celebrity news, products and services. Such content has positive, negative or neutral emotions. Mining the population’s sentiments about elections candidates and their aspects in virtual media can be performed using Opinion Mining techniques. There are solutions for highly structured opinion sources, such as reviews of products and services, however the problem is how to perform aspect-based opinion mining in less structured opinions sources. Besides evaluating concepts related to opinion mining, this work describes a case study which analyzes weakly structured sources and proposes an approach to mine aspect-based opinions using as sources of sentiment reviews of newspaper readers. The case study contributes (i) designing an approach to identify the aspect-based opinion about electoral candidates in news political comments, (ii) to the application of a machine learning-based method to classify the opinion about entities and their aspects in three classes (positive, negative and neutral) (iii) to the representation of a visual summarization review of entities and their aspects. It describes experiments to identify comments about health and education aspects using co-occurrence where satisfactory results were obtained using the techniques Expected Mutual Information Measure and phi-squared. In which regards sentences polarization, experiments are performed with two classification approaches, one that classifies sentences in three classes and another that performs binary classifications in two stages.
|
6 |
Mineração de opiniões em aspectos em fontes de opiniões fracamente estruturadas / Aspect-based opinion mining in weakly structured opinion sourcesSápiras, Leonardo Augusto January 2015 (has links)
Na WEB, são encontradas postagens sobre assuntos variados, notícias de celebridades, produtos e serviços. Tal conteúdo contém emoções positivas, negativas ou neutras. Minerar o sentimento da população sobre candidatos a eleições e seus aspectos em mídias virtuais pode ser realizado por meio de técnicas de Mineração de Opiniões. Existem soluções para fontes de opinião fortemente estruturadas, tais como revisões de produtos e serviços, no entanto o problema que se apresenta é realizar a mineração de opiniões em nível de aspecto em fontes de opiniões fracamente estruturadas. Além de avaliar conceitos relacionados à mineração de opiniões, o presente trabalho descreve a realização de um estudo de caso, o qual analisa fontes de opiniões fracamente estruturadas e propõe uma abordagem para minerar opiniões em nível de aspecto, utilizando como fontes de opinião comentários de leitores de jornais. O estudo de caso contribui (i) na concepção de uma abordagem para identificação da opinião em nível de aspecto sobre entidades eleitorais em comentários de notícias políticas, (ii) na aplicação de um método baseado em aprendizagem de máquina para classificar a opinião sobre entidades e seus aspectos em três classes (positivo, negativo e neutro), (iii) na representação da sumarização visual de opinião sobre entidades e seus aspectos. São descritos experimentos para identificar comentários que mencionam os aspectos saúde e educação, utilizando co-ocorrência, em que foram obtidos resultados satisfatórios utilizando as técnicas Expected Mutual Information Measure e phi-squared. Já para a polarização de sentenças, são realizados experimentos com duas abordagens de classificação: uma que classifica sentenças em três classes e outra que realiza classificações binárias em duas etapas. / In the WEB are found posts about various subjects like celebrity news, products and services. Such content has positive, negative or neutral emotions. Mining the population’s sentiments about elections candidates and their aspects in virtual media can be performed using Opinion Mining techniques. There are solutions for highly structured opinion sources, such as reviews of products and services, however the problem is how to perform aspect-based opinion mining in less structured opinions sources. Besides evaluating concepts related to opinion mining, this work describes a case study which analyzes weakly structured sources and proposes an approach to mine aspect-based opinions using as sources of sentiment reviews of newspaper readers. The case study contributes (i) designing an approach to identify the aspect-based opinion about electoral candidates in news political comments, (ii) to the application of a machine learning-based method to classify the opinion about entities and their aspects in three classes (positive, negative and neutral) (iii) to the representation of a visual summarization review of entities and their aspects. It describes experiments to identify comments about health and education aspects using co-occurrence where satisfactory results were obtained using the techniques Expected Mutual Information Measure and phi-squared. In which regards sentences polarization, experiments are performed with two classification approaches, one that classifies sentences in three classes and another that performs binary classifications in two stages.
|
7 |
Product Defect Discovery and Summarization from Online User ReviewsZhang, Xuan 29 October 2018 (has links)
Product defects concern various groups of people, such as customers, manufacturers, government officials, etc. Thus, defect-related knowledge and information are essential. In keeping with the growth of social media, online forums, and Internet commerce, people post a vast amount of feedback on products, which forms a good source for the automatic acquisition of knowledge about defects. However, considering the vast volume of online reviews, how to automatically identify critical product defects and summarize the related information from the huge number of user reviews is challenging, even when we target only the negative reviews. As a kind of opinion mining research, existing defect discovery methods mainly focus on how to classify the type of product issues, which is not enough for users. People expect to see defect information in multiple facets, such as product model, component, and symptom, which are necessary to understand the defects and quantify their influence. In addition, people are eager to seek problem resolutions once they spot defects. These challenges cannot be solved by existing aspect-oriented opinion mining models, which seldom consider the defect entities mentioned above. Furthermore, users also want to better capture the semantics of review text, and to summarize product defects more accurately in the form of natural language sentences. However, existing text summarization models including neural networks can hardly generalize to user review summarization due to the lack of labeled data.
In this research, we explore topic models and neural network models for product defect discovery and summarization from user reviews. Firstly, a generative Probabilistic Defect Model (PDM) is proposed, which models the generation process of user reviews from key defect entities including product Model, Component, Symptom, and Incident Date. Using the joint topics in these aspects, which are produced by PDM, people can discover defects which are represented by those entities. Secondly, we devise a Product Defect Latent Dirichlet Allocation (PDLDA) model, which describes how negative reviews are generated from defect elements like Component, Symptom, and Resolution. The interdependency between these entities is modeled by PDLDA as well. PDLDA answers not only what the defects look like, but also how to address them using the crowd wisdom hidden in user reviews. Finally, the problem of how to summarize user reviews more accurately, and better capture the semantics in them, is studied using deep neural networks, especially Hierarchical Encoder-Decoder Models.
For each of the research topics, comprehensive evaluations are conducted to justify the effectiveness and accuracy of the proposed models, on heterogeneous datasets. Further, on the theoretical side, this research contributes to the research stream on product defect discovery, opinion mining, probabilistic graphical models, and deep neural network models. Regarding impact, these techniques will benefit related users such as customers, manufacturers, and government officials. / Ph. D. / Product defects concern various groups of people, such as customers, manufacturers, and government officials. Thus, defect-related knowledge and information are essential. In keeping with the growth of social media, online forums, and Internet commerce, people post a vast amount of feedback on products, which forms a good source for the automatic acquisition of knowledge about defects. However, considering the vast volume of online reviews, how to automatically identify critical product defects and summarize the related information from the huge number of user reviews is challenging, even when we target only the negative reviews. People expect to see defect information in multiple facets, such as product model, component, and symptom, which are necessary to understand the defects and quantify their influence. In addition, people are eager to seek problem resolutions once they spot defects. Furthermore, users also want to better summarize product defects more accurately in the form of natural language sentences. These requirements cannot be satisfied by existing methods, which seldom consider the defect entities mentioned above, or hardly generalize to user review summarization. In this research, we develop novel Machine Learning (ML) algorithms for product defect discovery and summarization. Firstly, we study how to identify product defects and their related attributes, such as Product Model, Component, Symptom, and Incident Date. Secondly, we devise a novel algorithm, which can discover product defects and the related Component, Symptom, and Resolution, from online user reviews. This method tells not only what the defects look like, but also how to address them using the crowd wisdom hidden in user reviews. Finally, we address the problem of how to summarize user reviews in the form of natural language sentences using a paraphrase-style method. On the theoretical side, this research contributes to multiple research areas in Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning. Regarding impact, these techniques will benefit related users such as customers, manufacturers, and government officials.
|
8 |
Methods and resources for sentiment analysis in multilingual documents of different text typesBalahur Dobrescu, Alexandra 13 June 2011 (has links)
No description available.
|
Page generated in 0.0985 seconds