Spelling suggestions: "subject:"pmd"" "subject:"spmd""
1 |
Les rôles de PABPN1 dans la dystrophie musculaire oculopharyngée / PABPN1 functions in oculopharyngeal muscular dystrophyKlein, Pierre 20 September 2016 (has links)
PABPN1 est une protéine de liaison à l'ARN nucléaire et ubiquitaire impliquée dans de nombreux mécanismes de régulation post-transcriptionnelle des ARN. Une expansion anormale de triplets GCN dans le gène PABPN1 conduit à une dystrophie musculaire appelée dystrophie musculaire oculopharyngée (OPMD). A l'heure actuelle les mécanismes moléculaires conduisant d'une expansion de quelques triplets dans le gène d'une protéine ubiquitaire vers cette pathologie où seulement quelques muscles sont touchés ne sont pas connus. La caractéristique phénotypique majeure de la maladie est la présence d'agrégats intranucléaires dans les noyaux des muscles atteints et non atteints. Cependant le rôle exact de ces agrégats et leur implication dans la pathologie reste encore incertain. A l'heure actuelle il n'y a pas de traitements curatifs pour l'OPMD. Dans ce contexte, ce projet de thèse a porté sur 1) l'étude des mécanismes moléculaires dérégulés dans la pathologie, 2) l'étude de la contribution des agrégats nucléaires et 3) le développement d'un stratégie de thérapie génique. Au cours de ce travail il a été mis en évidence des défauts mitochondriaux et les mécanismes moléculaires sous-jacents ont été élucidés. L'étude de l'implication des agrégats dans la maladie a révélé la présence de défauts d'épissage et en particulier dans un ARN muscle spécifique codant la protéine TNNT3. Le projet de thérapie génique dit de remplacement consiste à éteindre PABPN1 par interférence à ARN et amener un ADNc (PABopt) qui code la forme saine et qui est non ciblée par les outils interférence grâce à la redondance du code génétique. Les résultats obtenus ont été très positifs à la fois in vitro et in vivo / PABPN1 is an RNA binding protein involved in many post-transcriptional RNA regulation mechanisms. A pathological expansion of the GCN triplet in the gene leads to a muscular dystrophy called Oculopharyngeal muscular dystrophy (OPMD). The molecular mechanisms leading to a small expansion in an ubiquitous protein to a disease, where only few muscles are impaired are still not fully understood. The main pathological hallmark is the presence in the myonuclei of nuclear aggregates of the PABPN1 protein. Today there is no cure for OPMD patients. In this context the projects developed during this thesis have been to 1) study the molecular mechanisms involved in OPMD, 2) study the contribution of the nuclear aggregates in the physiopathology of the disease and 3) develop a gene therapy strategy. We found mitochondrial dysfunctions present in OPMD muscles and we decipher the molecular mechanism involved. Study of PABPN1 aggregates in OPMD has highlighted splicing deregulation events. Among them TNNT3, a RNA which encodes a muscle specific protein is deregulated and we found that the pre-mRNA is trapped in nuclear aggregates outsides speckles nuclear domain containing its natural splicing factor (SC35), leading to an imbalance of the ratio of two mutually exclusives exons of the transcript. The gene therapy strategy developed is a replacement strategy that consists of silencing PABPN1 using RNAi and also bringing a novel version of the protein using a cDNA, untargeted by RNAi thanks to the genetic code redundancy, which encodes a wild-type form of PABPN1. We obtained promising results both in vitro and in vivo in mice OPMD model with a rescue of the pathological phenotype.
|
2 |
Biology and characterisation of polyalanine as an emerging pathological markerStochmanski, Shawn Joseph 12 1900 (has links)
Dix-huit maladies humaines graves ont jusqu'ici été associées avec des expansions de trinucléotides répétés (TNR) codant soit pour des polyalanines (codées par des codons GCN répétés) soit pour des polyglutamines (codées par des codons CAG répétés) dans des protéines spécifiques. Parmi eux, la dystrophie musculaire oculopharyngée (DMOP), l’Ataxie spinocérébelleuse de type 3 (SCA3) et la maladie de Huntington (MH) sont des troubles à transmission autosomale dominante et à apparition tardive, caractérisés par la présence d'inclusions intranucléaires (IIN). Nous avons déjà identifié la mutation responsable de la DMOP comme étant une petite expansion (2 à 7 répétitions supplémentaires) du codon GCG répété du gène PABPN1. En outre, nous-mêmes ainsi que d’autres chercheurs avons identifié la présence d’événements de décalage du cadre de lecture ribosomique de -1 au niveau des codons répétés CAG des gènes ATXN3 (SCA3) et HTT (MH), entraînant ainsi la traduction de codons répétés hybrides CAG/GCA et la production d'un peptide contenant des polyalanines. Or, les données observées dans la DMOP suggèrent que la toxicité induite par les polyalanines est très sensible à leur quantité et leur longueur.
Pour valider notre hypothèse de décalage du cadre de lecture dans le gène ATXN3 dans des modèles animaux, nous avons essayé de reproduire nos constatations chez la drosophile et dans des neurones de mammifères. Nos résultats montrent que l'expression transgénique de codons répétés CAG élargis dans l’ADNc de ATXN3 conduit aux événements de décalage du cadre de lecture -1, et que ces événements sont néfastes. À l'inverse, l'expression transgénique de codons répétés CAA (codant pour les polyglutamines) élargis dans l’ADNc de ATXN3 ne conduit pas aux événements de décalage du cadre de lecture -1, et n’est pas toxique. Par ailleurs, l’ARNm des codons répétés CAG élargis dans ATXN3 ne contribue pas à la toxicité observée dans nos modèles. Ces observations indiquent que l’expansion de polyglutamines dans nos modèles drosophile et de neurones de mammifères pour SCA3 ne suffit pas au développement d'un phénotype.
Par conséquent, nous proposons que le décalage du cadre de lecture ribosomique -1 contribue à la toxicité associée aux répétitions CAG dans le gène ATXN3.
Pour étudier le décalage du cadre de lecture -1 dans les maladies à expansion de trinucléotides CAG en général, nous avons voulu créer un anticorps capable de détecter le produit présentant ce décalage. Nous rapportons ici la caractérisation d’un anticorps polyclonal qui reconnaît sélectivement les expansions pathologiques de polyalanines dans la protéine PABPN1 impliquée dans la DMOP. En outre, notre anticorps détecte également la présence de protéines contenant des alanines dans les inclusions intranucléaires (IIN) des échantillons de patients SCA3 et MD. / Eighteen severe human diseases have thus far been associated with trinucleotide repeat (TNR) expansions coding for either polyalanine (encoded by a GCN repeat tract) or polyglutamine (encoded by a CAG repeat tract) in specific proteins. Among them, oculopharyngeal muscular dystrophy (OPMD), spinocerebellar ataxia type-3 (SCA3), and Huntington’s disease (HD) are late-onset autosomal-dominant disorders characterised by the presence of intranuclear inclusions (INIs). We have previously identified the OPMD causative mutation as a small expansion (2 to 7) of a GCG repeat tract in the PABPN1 gene. In addition, we and others have reported the occurrence of -1 ribosomal frameshifting events in expanded CAG repeat tracts in the ATXN3 (SCA3) and HTT (HD) genes, which result in the translation of a hybrid CAG/GCA repeat tract and the production of a polyalanine-containing peptide. Data from OPMD suggests that polyalanine-induced toxicity is very sensitive to the dosage and length of the alanine stretch.
To validate our ATXN3 -1 frameshifting hypothesis in animal models, we set out to reproduce our findings in Drosophila and mammalian neurons. Our results show that the transgenic expression of expanded CAG repeat tract ATXN3 cDNA led to -1 frameshifting events, and that these events are deleterious. Conversely, the expression of polyglutamine-encoding expanded CAA repeat tract ATXN3 cDNA was neither frameshifted nor toxic. Furthermore, expanded CAG repeat tract ATXN3 mRNA does not contribute to the toxicity observed in our models. These observations indicate that expanded polyglutamine repeats in Drosophila and mammalian neuron models of SCA3 are insufficient for the development of a phenotype.
Hence, we propose that -1 ribosomal frameshifting contributes to the toxicity associated with CAG repeat tract expansions in the ATXN3 gene.
To further investigate ribosomal frameshifting in expanded CAG repeat tract diseases, we sought to create an antibody capable of detecting the frameshifted product. Here we report the characterization of a polyclonal antibody that selectively recognizes pathological expansions of polyalanine in the protein implicated in OPMD, PABPN1. Furthermore, our antibody also detects the presence of alanine proteins in the intranuclear inclusions (INIs) of SCA3 and HD patient samples.
|
Page generated in 0.0385 seconds