• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 4
  • 3
  • Tagged with
  • 33
  • 33
  • 11
  • 11
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Using new tools to study the neural mechanisms of sensation : auditory processing in locusts and translational motion vision in flies

Isaacson, Matthew David January 2019 (has links)
This thesis describes work from both the University of Cambridge in the lab of Berthold Hedwig and from the HHMI Janelia Research Campus in the lab of Michael Reiser. At the University of Cambridge, my work involved the development and demonstration of a method for electrophoretically delivering dyes and tracers for anatomical and functional imaging into animals that are not amenable to genetic labelling techniques. Using this method in locusts and crickets - model systems of particular interest for their acoustic communication - I successfully delivered polar fluorescent dyes and tracers through the sheath covering the auditory nerve, simultaneously staining both the peripheral sensory structures and the central axonal projections without destroying the nerve's function. I could label neurons which extend far from the tracer delivery site on the nerve as well as local neuron populations through the brain's surface. I used the same method to deliver calcium indicators into central neuropils for in vivo optical imaging of sound-evoked activity, as well as calling song-evoked activity in the brain. The work completed at the Janelia Research Campus began with the development of a modern version of a modular LED display and virtual reality control system to enable research on the visual control of complex behaviors in head-fixed animals. The primary advantages of our newly developed LED-based display over other display technologies are its high-speed operation, brightness uniformity and control, precise synchronization with analog inputs and outputs, and its ability to be configured into a variety of display geometries. Utilizing the system's fast display refresh rates, I conducted the first accurate characterization of the upper limits of the speed sensitivity of Drosophila for apparent motion during flight. I also developed a flexible approach to presenting optic flow scenes for functional imaging of motion-sensitive neurons. Finally, through the on-line analysis of behavioral measures, image rendering, and display streaming with low latency to multi-color (UV/Green) LED panels, I demonstrated the ability to create more naturalistic stimuli and interactive virtual visual landscapes. Lastly, I used this new visual display system to explore a newly discovered cell-type that had been implicated in higher-order motion processing from a large genetic screen of visually-guided behavior deficits. Using genetic silencing and activation methods, and by designing stimuli that modeled the optic flow encountered during different types of self-motion, colleagues in the Reiser lab and I showed that this cell-type - named Lobula Plate Columnar 1 (LPC1) - is required for the stopping behavior of walking flies caused by back-to-front translation motion but is not involved in the rotational optomotor response. Using calcium imaging, I found that LPC1 was selectively excited by back-to-front motion on the eye ipsilateral to the neuron population and inhibited by front-to-back motion on the contralateral eye, demonstrating a simple mechanism for its selectivity to translation over rotation. I also examined an anatomically similar cell type - named Lobula-Lobula Plate Columnar type 1 (LLPC1) - and found that its selectivity results from a similar but opposite calculation for the detection of front-to-back translational motion. The detection of back-to-front motion had previously been hypothesized to be useful for collision avoidance, and this work provides a neural mechanism for how this detection could be accomplished, as well as providing a platform from which to explore the larger network for translation optic flow.
32

Influences égocentrées sur la perception de l'espace géocentré : objectivation au travers de l'estimation du franchissement d'obstacles hauts / Egocentric influence on geocantric spatial perception : estimating the possibility of passing under high obstacles

Bourrelly, Aurore 22 June 2011 (has links)
Percevoir son espace d’évolution est une activité déterminante dans l’élaboration des relations spatiales que nous tissons avec notre environnement. En neurosciences comportementales, l’étude de ces relations a généralement été abordée selon deux perspectives théoriques. L’une d’elle s’attache à décrire les relations au monde au travers des processus de perception directe impliquant notamment la notion d’affordances (i.e. de possibilités d’actions naturellement offertes par l’environnement) ; tandis que d’autres s’intéressent d’avantage aux aspects cognitifs de la perception avec la mise en place de processus de représentation spatiale. Cette dernière reflète notamment l’existence d’état(s) représenté(s) qu’il est possible de décrire à travers de la combinaison d’espaces stables appelés référentiels spatiaux. L’objectif de ce travail de thèse vise à mieux comprendre la contribution du référentiel égocentré (i.e. corporel) dans la perception de l’espace géocentré (i.e. gravitaire). La question a notamment été abordée autour de deux axes de recherche interrogeant d’une part (i) l’origine de l’influence égocentrée préalablement observée dans le noir sur la perception géocentrée, et d’autre part (ii) la présence du phénomène égocentré dans un contexte visuel plus enrichi suite à l’ajout d’un flux optique. Pour ce faire quatre études centrées autour d’un paradigme d’estimation des possibilités de franchissement d’obstacles hauts ont été réalisées. Pris dans leur ensemble, les résultats expérimentaux soulignent le caractère particulièrement puissant et complexe du phénomène égocentré corporel observé sur la perception de l’espace gravitaire. Ces résultats, discutés en termes d’interpénétrabilité entre référentiels spatiaux offrent un support d’étude intéressant sur la manière dont les référentiels sont utilisés dans les processus de représentation spatiale. / Perceiving space is a relevant task in determining our relationships with the environment. In behavioral neuroscience, investigating this spatial relationship can classically be explored with two theoretical approaches. The first one uses direct perception to describe the spatial relationships, involving affordances (i.e. the action ability naturally offer by the environment). The other one investigates the cognitive aspect of perception implying the use of spatial representation process. The later one traduces the existence of represented states which can be described through the interaction of different stable states called spatial reference frames. The present work investigates the contribution of the egocentric reference frame (body-related) on the perception of the geocentric space (earth-based). This was questioned through two research lines, (i) the origin of egocentric influence previously observed in darkness upon geocentric perception, (ii) the existence of the egocentric phenomenon in an enriched visual scene. To answer these questions, four experiments were conducted where the paradigm of passing under high obstacles was used. Overall, these results stress the powerful and complex aspect of the egocentric phenomenon observed upon geocentric perception. This work, discussed in term of interpenetrability between reference frames, provide an interesting support on the way how spatial reference frames are used in perceiving space.
33

Synthèse d’une solution GNC basée sur des capteurs de flux optique bio-inspirés adaptés à la mesure des basses vitesses pour un atterrissage lunaire autonome en douceur / Design of a GNC Solution based on Bio-Inspired Optic Flow Sensors adapted to low speed measurement for an Autonomous Soft Lunar Landing

Sabiron, Guillaume 18 November 2014 (has links)
Dans cette thèse, nous nous intéressons au problème de l’atterrissage lunaire autonome et nous proposons une méthode innovante amenant une alternative à l’utilisation de capteurs classiques qui peuvent se révéler encombrants, énergivores et très onéreux.La première partie est consacrée au développement et à la construction de capteurs de mouvement inspirés de la vision des insectes volants et mesurant le flux optique.Le flux optique correspond à la vitesse angulaire relative de l’environnement mesurée par la rétine d’un agent. Dans un environnement fixe, les mouvements d’un robot génèrent un flux optique contenant des informations essentielles sur le mouvement de ce dernier. En utilisant le principe du « temps de passage », nous présentons les résultats expérimentaux obtenus en extérieur avec deux versions de ces capteurs.Premièrement, un capteur mesurant le flux optique dans les deux directions opposées est développé et testé en laboratoire. Deuxièmement un capteur adapté à la mesure des faibles flux optiques similaires à ceux pouvant être mesurés lors d’un alunissage est développé, caractérisé et enfin testé sur un drone hélicoptère en conditions extérieures.Dans la seconde partie, une méthode permettant de réaliser le guidage, la navigation et la commande (GNC pour Guidance Navigation and Control) du système est proposée. L’innovation réside dans le fait que l’atterrissage en douceur est uniquement assuré par les capteurs de flux optique. L’utilisation des capteurs inertiels est réduite au maximum. Plusieurs capteurs orientés dans différentes directions de visée, et fixés à la structure de l’atterrisseur permettent d’atteindre les conditions finales définies par les partenaires industriels. Les nombreuses informations décrivant la position et l’attitude du système contenues dans le flux optique sont exploitées grâce aux algorithmes de navigation qui permettent d’estimer les flux optiques ventraux et d’expansion ainsi que le tangage.Nous avons également montré qu’il est possible de contrôler l’atterrisseur planétaire en faisant suivre aux flux optiques estimés une consigne optimale au sens de la consommation d’énergie. Les simulations réalisées durant la thèse ont permis de valider le fonctionnement et le potentiel de la solution GNC proposée en intégrant le code du capteur ainsi que des images simulées du sol de la lune. / In this PhD thesis, the challenge of autonomous lunar landing was addressed and an innovative method was developed, which provides an alternative to the classical sensor suites based on RADAR, LIDAR and cameras, which tend to be bulky, energy consuming and expensive. The first part is devoted to the development of a sensor inspired by the fly’s visual sensitivity to optic flow (OF). The OF is an index giving the relative angular velocity of the environment sensed by the retina of a moving insect or robot. In a fixed environment (where there is no external motion), the self-motion of an airborne vehicle generates an OF containing information about its own velocity and attitude and the distance to obstacles. Based on the “Time of Travel” principle we present the results obtained for two versions of 5 LMSs based optic flow sensors. The first one is able to measure accurately the OF in two opposite directions. It was tested in the laboratory and gave satisfying results. The second optic flow sensor operates at low velocities such as those liable to occur during lunar landing was developed. After developing these sensors, their performances were characterized both indoors and outdoors, and lastly, they were tested onboard an 80-kg helicopter flying in an outdoor environment. The Guidance Navigation and Control (GNC) system was designed in the second part on the basis of several algorithms, using various tools such as optimal control, nonlinear control design and observation theory. This is a particularly innovative approach, since it makes it possible to perform soft landing on the basis of OF measurements and as less as possible on inertial sensors. The final constraints imposed by our industrial partners were met by mounting several non-gimbaled sensors oriented in different gaze directions on the lander’s structure. Information about the lander’s self-motion present in the OF measurements is extracted by navigation algorithms, which yield estimates of the ventral OF, expansion OF and pitch angle. It was also established that it is possible to bring the planetary lander gently to the ground by tracking a pre-computed optimal reference trajectory in terms of the lowest possible fuel consumption. Software-in-the-loop simulations were carried out in order to assess the potential of the proposed GNC approach by testing its performances. In these simulations, the sensor firmware was taken into account and virtual images of the lunar surface were used in order to improve the realism of the simulated landings.

Page generated in 0.037 seconds