• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 24
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 96
  • 96
  • 29
  • 28
  • 24
  • 21
  • 19
  • 17
  • 16
  • 16
  • 14
  • 13
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Methodologies used for increasing the output power of an Erbium doped fiber ring laser

Le Roux, Josias Johannes 17 September 2014 (has links)
M.Ing. (Electrical And Electronic Engineering) / Please refer to full text to view abstract
22

Electroluminescent Thin Films for Integrated Optics Applications

Baker, Christopher Charles January 2003 (has links)
No description available.
23

Numerical design of an optical solid-state amplifier

Van der Westhuizen, Gysbert Johannes 12 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / Please refer to full text for abstract
24

Versatile photonic processor based on fiber optical parametric amplifiers

Liang, Yu, 梁羽 January 2009 (has links)
published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
25

Applications of non-identical multi-quantum well semiconductor optical amplifier.

January 2006 (has links)
Wan Shan Mei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references. / Abstracts in English and Chinese. / Abstract / Acknowledgements / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- History of Semiconductor Optical Amplifier In Optical Networks --- p.1 / Chapter 1.2 --- Comparisons of SOAs With Other Amplifiers --- p.3 / Chapter 1.2.1 --- Erbium Doped Fiber Amplifier (EDFA) --- p.3 / Chapter 1.2.2 --- Raman Amplifiers --- p.5 / Chapter 1.2.3 --- Parametric Amplifiers --- p.7 / Chapter 1.3 --- The Need of SO A for Wavelength Conversion in Optical Networks --- p.8 / Chapter 1.3.1 --- General Applications of SOAs --- p.8 / Chapter 1.3.2 --- Wavelength Conversion of SOAs --- p.9 / Chapter 1.4 --- Cross Gain Modulation (XGM) --- p.11 / Chapter 1.5 --- Cross Phase Modulation (XPM) --- p.13 / Chapter 1.6 --- Four Wave Mixing (FWM) --- p.16 / Chapter 1.7 --- Bi-refringence Switching --- p.19 / Chapter 1.8 --- Conclusion --- p.22 / Chapter 1.9 --- References --- p.22 / Chapter Chapter 2 --- Physics of Semiconductor Optical Amplifier and Background of Quantum Well Semiconductor Optical Amplifier / Chapter 2.1 --- Physics of Semiconductor Optical Amplifier --- p.26 / Chapter 2.1.1 --- General Structure of SOAs --- p.26 / Chapter 2.1.2 --- Principles of Optical Amplification --- p.27 / Chapter 2.1.3 --- Material Gain Coefficient --- p.29 / Chapter 2.1.4 --- Bulk Material Properties of SOAs --- p.32 / Chapter 2.1.5 --- Spontaneous Emission Noise --- p.34 / Chapter 2.1.6 --- Polarization Sensitivity --- p.37 / Chapter 2.1.7 --- Dynamics Effects --- p.38 / Chapter 2.2 --- Background of Quantum Wells Semiconductor Optical Amplifier --- p.38 / Chapter 2.2.1 --- Definition of Quantum Well SOAs --- p.38 / Chapter 2.2.2 --- Different Types of Quantum Well SOAs --- p.39 / Chapter 2.2.3 --- Quantization of the Conduction Band and Valence Band --- p.40 / Chapter 2.3 --- Comparison Between Bulk and Quantum Well SOAs --- p.44 / Chapter 2.3.1 --- Gain Bandwidth --- p.44 / Chapter 2.3.2 --- Polarization Dependence --- p.44 / Chapter 2.3.3 --- Saturation Output Power --- p.45 / Chapter 2.4 --- Conclusion --- p.46 / Chapter 2.5 --- References --- p.46 / Chapter Chapter 3 --- Wideband Wavelength Conversion by XGM in Asymmetrical Multiple Quantum Well Semiconductor Optical Amplifier (AMQW-SOA) / Chapter 3.1 --- Background of Wideband Asymmetrical Multiple Quantum Well Semiconductor Optical Amplifier --- p.47 / Chapter 3.1.1 --- Sequence Influence of Non-identical InGaAsP Quantum Wells on SO A Broadband Characteristics --- p.47 / Chapter 3.1.2 --- Influence of Separate Confinement Heterostructure on Emission Bandwidth InGaAsP SOAs --- p.54 / Chapter 3.2 --- Wideband Wavelength Conversion --- p.58 / Chapter 3.2.1 --- First Experiment of Wideband Wavelength Conversion from 1.5 μm to 14 μm by XGM in AMQW-SOA --- p.62 / Chapter 3.2.2 --- Second Experiment of Wideband Wavelength Conversion from 1.5 μm to 1.4μm by XGM with 2.5 Gbit/s in AMQW-SOA --- p.64 / Chapter 3.2.3 --- Third Experiment of Investigation of Wavelength Conversion from 15 μm to 1.5 μm/1.3 μm by XGM in AMQW-SOA --- p.67 / Chapter 3.3 --- Conclusion --- p.69 / Chapter 3.4 --- References --- p.71 / Chapter Chapter 4 --- Wavelength Conversion by Birefringence Switchingin Asymmetrical Multiple Quantum Well Semiconductor Optical Amplifier (AMQW-SOA) / Chapter 4.1 --- First Experiment of Wideband Wavelength Conversion from 1.5 μm to 1.4 μm by Birefringence Switching in AMQW-SOA --- p.74 / Chapter 4.2 --- Second Experiment of Investigation of Wavelength Conversion from 1.5 μm to 1.5μm by Birefringence Switching in AMQW-SOA --- p.76 / Chapter 4.3 --- Conclusion --- p.78 / Chapter 4.4 --- References --- p.79 / Chapter Chapter 5 --- Asymmetrical Multiple Quantum Well Semiconductor Optical Amplifier (AMQW-SOA) for Pattern-Effect Free Gain / Chapter 5.1 --- Examples Methods of Pattern Effect Compensation --- p.81 / Chapter 5.1.1 --- Suppression of Pattern Dependent Effects from a Semiconductor Optical Amplifier using an Optical Delay Interferometer (ODI) / Chapter 5.1.2 --- Acceleration of Gain Recovery in QD-SOA --- p.84 / Chapter 5.2 --- Background Theory of Quantum Well Reservoirs and Carrier Transit Time --- p.87 / Chapter 5.3 --- First Experiment of Pattern Effect Free Amplification in AMQW-SOA --- p.92 / Chapter 5.4 --- Second Experiment of Pattern Effect Free Amplification in AMQW-SOA --- p.97 / Chapter 5.5 --- Conclusion --- p.102 / Chapter 5.6 --- References --- p.103 / Chapter Chapter 6 --- Conclusion and Future Work / Chapter 6.1 --- Conclusion --- p.105 / Chapter 6.2 --- Future Work --- p.108 / Appendix Butterfly Photonic Packaging --- p.109
26

Linear and nonlinear effects in Raman fiber amplifiers and lasers

Ravet, Gautier 11 June 2007 (has links)
RESUME Parmi les divers processus permettant l'amplification optique indispensable aux systèmes de télécommunications par fibre, l'effet Raman, basé sur l'échange de puissance entre un signal et un laser de pompe de fréquence supérieure à travers un couplage avec les vibrations moléculaires de la silice, permet d'amplifier à n'importe quelle longueur d'onde avec une grande bande passante. Un des inconvénients majeurs de cette technique est la forte puissance optique nécessaire à sa réalisation qui génère l'apparition de nombreux effets non linéaires potentiellement dommageables pour la bonne transmission du signal. L'interaction des effets Kerr ou de la diffusion Brillouin avec les autres caractéristiques de la propagation dans les fibres peut entraîner une diminution des performances. Dans la première partie de cette thèse, nous décrivons un nouveau processus d'élargissement spectral induit par l'effet Kerr dans les amplificateurs Raman fibrés. Nous avons également mis à jour ce même processus dans les lasers Raman. L'application de ce phénomène à la suppression de la diffusion Brillouin est ensuite démontrée avec succès. La deuxième partie de ce travail démontre comment tirer avantage des effets non linéaires afin de générer des impulsions optiques de haute puissance dans un laser Raman fibré. Enfin, dans la troisième partie, nous proposons et démontrons l'application de deux nouvelles méthodes de caractérisation à la mesure de la distribution des effets Raman et Kerr le long des fibres optiques grâce à une technique de réflectométrie optique cohérente. SUMMARY Among the various processes that allow optical amplification that is required for fiber telecommunication systems, the Raman effect, based on the power exchange between a signal and a pump laser with higher frequency through a coupling with molecular vibrations of silica, enables to amplify at any wavelength with a large bandwidth. One of the major drawbacks of this technique is the high power required to realize it, generating the appearance of numerous nonlinear effects, potentially harmful for the quality transmission. The interplay between Kerr effects or Brillouin scattering and other propagation characteristics of optical fibers can lead to a decrease of the performances. In the first part of this thesis we describe a new broadening mechanism induced by the Kerr effect in Raman fiber amplifiers. This effect was also discovered in Raman fiber lasers. An application of this phenomenon as an efficient way to suppress Brillouin scattering is then successfully demonstrated. The second part of this work demonstrated how to take advantage of optical nonlinearities to generate high peak power pulses with a Raman fiber laser. Finally, in the third part, we propose and demonstrate the application of two new methods to measure the spatial distribution of Raman and Kerr effects along optical fibers thanks to a coherent optical reflectometry technique.
27

Versatile photonic processor based on fiber optical parametric amplifiers

Liang, Yu, January 2009 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2009. / Includes bibliographical references. Also available in print.
28

Semiconductor optical amplifier based optical switches for large scale integration

Wang, Haibo January 2011 (has links)
No description available.
29

Spectroscopy of thulium doped silica glass

Simpson, David Allan. January 2008 (has links)
Thesis (Ph.D.)--Victoria University (Melbourne, Vic.), 2008.
30

A UV preionized TEA CO₂ laser amplifier Master's project /

Miller, Marshall. Bach, David Rudolph. January 1900 (has links)
Thesis (M.S.)--University of Michigan, (1977?).

Page generated in 0.07 seconds