• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 11
  • 11
  • 11
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation of continuous filtering frequency comb Vernier spectroscopy for continuous acquisition of spectra in a flame

Edlund, Adam January 2017 (has links)
In this project laser absorption spectroscopy was performed on a flame in a Fabry-Pérot cavity, using an optical frequency comb. Optical frequency comb spectroscopy is a technique that allows broadband ultra-sensitive detection of molecular species in gas phase. Optical frequency combs are generated by femtosecond mode-locked lasers, which generate short pulses and whose spectrum consists of a comb of sharp laser lines covering a broad spectral range. Doing spectroscopy with optical frequency combs can hence be compared to measurements with thousand of synchronised continuous wave lasers simultaneously, which enables broadband sensitive measurements in short acquisition times. A Vernier spectrometer uses the filtering ability of the cavity to allow sequential transmission of parts of the frequency comb spectrum. Its technical simplicity and robustness make it a good candidate for measuring in turbulent environments. The aim of the project was to implement continuous-filtering Vernier spectroscopy in a setup for measuring absorption spectra in air and in a flame. This was done by using an Er:fiber femtosecond laser emitting in the near-infrared wavelength range and a Fabry-Pérot cavity containing the flame. The cavity, which consists of two highly reflective mirrors, lets the light of the comb interact with the molecules in the flame for each of the many round-trips it perform; thus increasing the sensitivity to absorption. An active locking mechanism was implemented to stabilize the coupling of the optical frequency comb to the cavity. The locking allowed multiple measurements to be averaged which reduced noise. A galvanometer scanner was added to the system which was used to measure a broad part of the comb spectrum. Hot water absorption lines were detected in the swept comb spectrum and a candidate absorption peak for OH absorption was recorded. The spectrometer today has opportunities for improvements. A frequency calibration should be implemented which is essential for making estimates of reactant/product concentrations in combustion processes.
2

Pentes de frequências ópticas baseados em moduladores eletro-ópticos e fibras altamente não lineares / Optical frequency comb based in electro-optic modulators and highly nonlinear fibers

Saquinaula Brito, José Luis, 1981- 10 August 2015 (has links)
Orientadores: Flávio Caldas da Cruz, Paulo Clóvis Dainese Júnior / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-28T22:50:49Z (GMT). No. of bitstreams: 1 SaquinaulaBrito_JoseLuis_M.pdf: 4387885 bytes, checksum: 7b7c41672acbabf5abc5b7c398df00c0 (MD5) Previous issue date: 2015 / Resumo: Nos últimos 15 anos os pentes de frequências ópticas baseados em lasers de femtossegundos representaram uma revolução na área de metrología e medidas de precisão, permitindo medir diretamente frequências de várias centenas de THz assim como posibilitando o advento de relógios atômicos ópticos. Estes pentes também têm encontrado importantes aplicações em outras áreas da Física, tais como espectroscopia de alta resolução e precisão, geração de altos harmônicos na região da ultravioleta e raios X moles, ou até na procura de exoplanetas através da calibração de espectrômetros astrofísicos. Neste trabalho, estudamos a geração de pentes de frequências ópticas baseados em moduladores eletro-ópticos e fibras altamente não lineares, com o objetivo de implementar novas configurações, alternativas aos pentes baseados em lasers de femtossegundos. Um objetivo é implementar pentes com a maior largura de banda possível que ao mesmo tempo preservem alta coerência entre as frequências geradas, aproveitando componentes comercialmente disponíveis, desenvolvidos para comunicações ópticas na região espectral de 1550 nm. Buscamos implementar dois tipos de pentes de frequências ópticas. Um deles usa um modulador eletro-óptico e gera um pente com pequena largura de banda (10 nm) e espaçamento entre frequências de 25 GHz. O outro pente, gerado com base em fenômenos não lineares em fibras ópticas, fornece maior largura de banda (270 nm) com espaçamento entre frequências de 776 GHz. No caso do pente de frequências gerado pelo modulador (pente eletro-óptico), o processo é devido ao fenômeno eletro-óptico (efeito Pockels) dentro de um cristal de Niobato de Lítio que também forma uma cavidade óptica ressonante. Utilizamos um laser semicondutor contínuo e de frequência única em 1550 nm para gerar um pente (eletro-óptico) com largura espectral de 10 nm com espaçamento de 25 GHz entre as frequências. O outro pente de frequências ópticas é baseado na criação em cascata de produtos da mistura de quatro ondas produzidos a partir de dois lasers semicondutores contínuos, que foram utilizados tanto em onda contínua (cw) ou pulsados, i.e., com modulação de amplitude. Obtivemos espectros com largura de 269 nm (1431 nm ¿ 1700 nm) e espaçamento entre linhas de 6.3 nm (776 GHz). Finalmente, foi alargado o espectro do pente de frequências ópticas gerado pelo modulador eletro-óptico ao usar fibras altamente não lineares. O espectro obtido apresentaram um alargamento modesto, com largura de 23 nm e separação de 25 GHz entre as frequências / Abstract: In the last 15 years, optical frequency combs based on femtosecond lasers have represented a revolution in the area of metrology and precision measurements, making it possible to directly measure frequencies of several hundred terahertz, and affording the advent of optical atomic clocks. These frequency combs today are used in important applications in other areas of Physics, such as high resolution and accuracy spectroscopy, generation of high harmonics in the ultraviolet and soft X-rays region, or even in the search of exoplanets through calibration of Astrophysics spectrometers. In this work, we study the generation of optical frequency combs based on electro-optic modulators and highly nonlinear fibers, with the goal of implementing new configurations, which can be alternative to frequency combs based on femtosecond lasers. One particular goal is to implement frequency combs with the largest possible bandwidth, while still preserving the coherence between the generated frequencies, and taking advantage of commercially available components developed for optical communications, in the 1550 nm spectral region. We were interested in implement two types of optical frequency combs. One of them uses an electro-optical modulator and generates a frequency comb with small bandwidth (10 nm) and 25 GHz frequency spacing. The other comb, generated by nonlinear phenomena in optical fibers, provides greater bandwidth (270 nm) with a frequency spacing of 776 GHz. In the case of the frequency comb generated by the modulator (electro-optical comb), the process is due to the electro-optical phenomenon (Pockels effect) within a Lithium Niobate crystal which also forms a resonant optical cavity. We use a continuous-wave, single frequency semiconductor laser at 1550 nm to generate a frequency comb with a spectral width of 10 nm and 25 GHz frequency spacing. The other optical frequency comb is based on the creation of cascaded four-wave mixing products, produced from two continuous semiconductor lasers that were used both in continuous-wave (cw) or pulsed operation, i.e., with amplitude modulation.We obtained spectra with a width of 269 nm (1431 nm - 1700 nm) and line spacing of 6.3 nm (776 GHz). Finally, we combined both combs by using the highly nonlinear fiber to expand the optical comb spectrum generated by the electro-optical modulator. The resulting spectra showed a modest broadening, with a width of 23 nm and 25 GHz separation between frequencies / Mestrado / Física / Mestre em Física / 1186840 / 134295/2013-7 / CAPES / CNPQ
3

LASER STABILIZATION EXPERIMENTS AND OPTICAL FREQUENCY COMB APPLICATIONS

Michael W Kickbush (13105209) 18 July 2022 (has links)
<p>In this Thesis I report on my work done in replicating the Pound-Drever-Hall (PDH) laser stabilization technique as well as applications of PDH to microring resonators and generated Optical Frequency Combs (OFC). These works have been broken down into three sections. First, I replicated the PDH method with a continuous wave (CW) laser along with a Fabry-Pérot Cavity (FPC). Second, I applied the same technique to a 25 GHz Free Spectral Range (FSR) microring resonator fabricated in Silicon Nitride. Third, I applied the PDH technique to a high Quality Factor (Q) high Free Spectral Range (FSR) microring resonator in preparation to lock the repetition rate of two soliton combs beat together. The last experiment was for an application towards a compact optical clock system; such systems will have a wide impact on the infrastructure of our navigation and communication structures in use today.</p>
4

Low Noise, High Repetition Rate Semiconductor-based Mode-locked Lasers For Signal Processing And Coherent Communications

Quinlan, Franklyn 01 January 2008 (has links)
This dissertation details work on high repetition rate semiconductor mode-locked lasers. The qualities of stable pulse trains and stable optical frequency content are the focus of the work performed. First, applications of such lasers are reviewed with particular attention to applications only realizable with laser performance such as presented in this dissertation. Sources of timing jitter are also reviewed, as are techniques by which the timing jitter of a 10 GHz optical pulse train may be measured. Experimental results begin with an exploration of the consequences on the timing and amplitude jitter of the phase noise of an RF source used for mode-locking. These results lead to an ultralow timing jitter source, with 30 fs of timing jitter (1 Hz to 5 GHz, extrapolated). The focus of the work then shifts to generating a stabilized optical frequency comb. The first technique to generating the frequency comb is through optical injection. It is shown that not only can injection locking stabilize a mode-locked laser to the injection seed, but linewidth narrowing, timing jitter reduction and suppression of superfluous optical supermodes of a harmonically mode-locked laser also result. A scheme by which optical injection locking can be maintained long term is also proposed. Results on using an intracavity etalon for supermode suppression and optical frequency stabilization then follow. An etalon-based actively mode-locked laser is shown to have a timing jitter of only 20 fs (1Hz-5 GHz, extrapolated), optical linewidths below 10 kHz and optical frequency instabilities less than 400 kHz. By adding dispersion compensating fiber, the optical spectrum was broadened to 2 THz and 800 fs duration pulses were obtained. By using the etalon-based actively mode-locked laser as a basis, a completely self-contained frequency stabilized coupled optoelectronic oscillator was built and characterized. By simultaneously stabilizing the optical frequencies and the pulse repetition rate to the etalon, a 10 GHz comb source centered at 1550 nm was realized. This system maintains the high quality performance of the actively mode-locked laser while significantly reducing the size weight and power consumption of the system. This system also has the potential for outperforming the actively mode-locked laser by increasing the finesse and stability of the intracavity etalon. The final chapter of this dissertation outlines the future work on the etalon-based coupled optoelectronic oscillator, including the incorporation of a higher finesse, more stable etalon and active phase noise suppression of the RF signal. Two appendices give details on phase noise measurements that incorporate carrier suppression and the noise model for the coupled optoelectronic oscillator.
5

High-capacity short-reach optical communications

Lin, Rui January 2016 (has links)
The global traffic is experiencing an exponential growth posing severe challenges to the communication networks in terms of capacity. As a future-proof technology fiber communication is widely implemented in different network segments, which can be categorized by transmission distance as long-haul and short-reach. This thesis focuses on the short-reach communication networks including fiber access network connecting the end users to the metro/core networks that covering tens of kilometers and optical datacenter network handling the traffic within the datacenter with distance up to a few kilometers. For fiber access networks, wavelength division multiplexing passive optical networks (WDM-PONs) assign a dedicated wavelength channel to each user guaranteeing high data rate. Dense channels enlarges the user count but makes the signals vulnerable to the wavelength drift. In this regard we propose two schemes based on optical frequency comb technique to generate stable carriers for WDM-PONs. Meanwhile, radio-over-fiber techniques allows the transmission of radio signals between central offices and the cells. Millimeter wave (MMW) over fiber, on the other hand, offer high bandwidth for future high capacity mobile access. We propose and experimentally demonstrate a palm-shaped spectrum generation where the high-power central carrier can be used for upstream transmission while multiple MMW bands are capable of transmitting different downstream data simultaneously. Regarding optical datacenter networks, passive optical interconnects (POIs) have been proposed as an energy-efficient solution since only passive optical components are used for server interconnection. However, the high insertion loss may result in a scalability problem. We develop a methodology that considers various physical-layer aspects, e.g., receiver types, modulation formats, to quantify the scalability of POIs. Both theoretical analyses and experimental measurements have been performed to assess the scalability of various coupler-based POIs. / Den globala datatrafiken växer exponentiellt, både på grund av nya bandbreddskrävande applikationer och ökningen av antalet användare. Detta innebär en utmaning för kommunikationsnätens kapacitet. Fiberoptisk kommunikation är en framtidssäker teknik för att möta detta kapacitetsbehov och används redan i stor utsträckning i olika delar av näten. Beroende på överföringsavstånd, kan fibernät kategoriseras som långdistansnät eller nät med kort räckvidd. Denna avhandling behandlar nät med kort räckvidd, innefattande dels 1) accessnät som förbinder slutanvändarna till stadsnätet/ huvudnätet och typiskt omfattar tiotals kilometer, dels 2) optiska datanätverk som hanterar den interna trafiken inom datacenter med överföringsavstånd upp till ett par kilometer.För fiberaccessnät är en av de lovande teknikerna våglängdsmultiplexade passiva optiska nät (WDM-PON), där en dedicerad våglängdskanal tilldelas varje användare vilket garanterar hög datahastighet. Genom ett litet kanalavstånd så kan antalet användare i WDM-PON utökas men det gör samtidigt systemet känsligt för våglängdsdrift hos lasrarna. För att råda bot på detta, föreslår vi två system baserade på optisk frekvenskams-teknik. Vi validerar experimentellt att de kan generera stabila optiska bärvågor för WDM-PON. Radio-över –fiber-tekniken gör samtidigt det möjligt att sända radiosignaler över en lång sträcka och används därför i mobilsystem för överföring mellan centralstationen och radiocellerna. Millimetervågor (MMW) över fiber erbjuder ännu större modulationsbandbredd och är lovande för framtidens mobilradiosystem med hög kapacitet. I denna avhandling föreslår vi, och demonstrerar experimentellt, generation av ett frekvenskams-spektrum som är format som en handflata, där en central bärare med hög effekt (långfingret på handflatan) kan användas i radiocellerna för uppströms överföring, medan multipla MMW band (övriga fingrar) samtidigt kan överföra olika data nedströms. När det gäller nätverk för optiska datacenter, har passiva optiska interconnects (POI) föreslagits som en energieffektiv lösning, där endast passiva optiska komponenter används för ihopkoppling av servrarna. Höga inkopplingsförluster hos passiva optiska komponenter kan emellertid leda till allvarliga skalbarhetsproblem. I denna avhandling presenterar vi en nyutvecklad metod för att kvantifiera skalbarheten, vilken tar hänsyn till olika faktorer i det fysiska lagret som t.ex. mottagartyp och modulationsformat. Både teoretiska analyser och experimentella mätningar har utförts för att utvärdera skalbarheten hos olika kopplarbaserade POI. / <p>QC 20161117</p>
6

Fourier transform and Vernier spectroscopy using optical frequency combs / Fouriertransform- och Vernierspektroskopi med optiska frekvenskammar

Khodabakhsh, Amir January 2017 (has links)
Optical frequency comb spectroscopy (OFCS) combines two previously exclusive features, i.e., wide optical bandwidth and high spectral resolution, enabling precise measurements of entire molecular bands and simultaneous monitoring of multiple gas species in a short measurement time. Moreover, the equidistant mode structure of frequency combs enables efficient coupling of the comb power to enhancement resonant cavities, yielding high detection sensitivities. Different broadband detection methods have been developed to exploit the full potential of frequency combs in spectroscopy, based either on Fourier transform spectroscopy or on dispersive elements.There have been two main aims of the research presented in this thesis. The first has been to improve the performance of mechanical Fourier transform spectrometers (FTS) based on frequency combs in terms of sensitivity, resolution and spectral coverage. In pursuit of this aim, we have developed a new spectroscopic technique, so-called noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), and achieved a shot-noise-limited sensitivity and low ppb (parts-per-billion, 10−9) CO2 concentration detection limit in the near-infrared range using commercially available components. We have also realized a novel method for acquisition and analysis of comb-based FTS spectra, a so-called sub-nominal resolution method, which provides ultra-high spectral resolution and frequency accuracy (both in kHz range, limited only by the stability of the comb) over the broadband spectral range of the frequency comb. Finally, we have developed an optical parametric oscillator generating a frequency comb in the mid-infrared range, where the strongest ro-vibrational molecular absorption lines reside. Using this mid-infrared comb and an FTS, we have demonstrated, for the first time, comb spectroscopy above 5 μm, measured broadband spectra of several species and reached low ppb detection limits for CH4, NO and CO in 1 s.The second aim has been more application-oriented, focused on frequency comb spectroscopy in combustion environments and under atmospheric conditions for fast and sensitive multispecies detection. We have demonstrated, for the first time, cavity-enhanced optical frequency comb spectroscopy in a flame, detected broadband high temperature H2O and OH spectra using the FTS in the near-infrared range and showed the potential of the technique for flame thermometry. For applications demanding a short measurement time and high sensitivity under atmospheric pressure conditions, we have implemented continuous-filtering Vernier spectroscopy, a dispersion-based spectroscopic technique, for the first time in the mid-infrared range. The spectrometer was sensitive, fast, robust, and capable of multispecies detection with 2 ppb detection limit for CH4 in 25 ms. / Optisk frekvenskamspektroskopi (OFCS) kombinerar två tidigare icke förenliga egenskaper, dvs. ett brett optiskt frekvensområde med en hög spektral upplösning, vilket möjliggör noggranna mätningar av hela molekylära absorptionsband och detektion av flera gaser samtidigt med en kort mättid. Eftersom frekvenskammar har en regelbunden struktur med jämnt separerade laser moder kan man effektivt koppla kammen till en optisk kavitet och därmed möjliggöra frekvenskamsdetektion med hög känslighet. Olika metoder har utvecklats för att utnyttja frekvenskammarnas fulla potential för spektroskopi, baserad på antingen Fouriertransform-spektroskopi eller dispersiva element.Forskningen som presenteras i denna avhandling har haft två huvudmål. Det första har varit att förbättra prestandan hos mekaniska Fourier-transformspektrometrar (FTS) baserat på frekvenskammar med avseende på känslighet, upplösning och spektral täckning. I strävan efter detta har vi utvecklat en ny spektroskopisk teknik, benämnd brusimmun kavitetsförstärkt optisk frekvenskamspektroskopi (NICE-OFCS), och uppnått en hagelbrusbegränsad känslighet och detektionsgränser ner till låga ppb koncentrationer (miljarddelar, 10−9) för CO2 i det när-infraröda frekvensområdet enbart med användning av kommersiellt tillgängliga komponenter. Vi har också utvecklat en ny metod för insamling och analys av kambaserade FTS-spektra, som betecknas ha sub-nominell upplösning. Metoden gör det möjligt att uppnå ultrahög spektral upplösning och hög frekvensnoggrannhet (båda i kHz-området, endast begränsad av kammens stabilitet) över kammens hela frekvensområde. Slutligen har vi utvecklat en optisk parametrisk oscillator som genererar en frekvenskam i det mid-infraröda frekvensområdet, där de starkaste rotations-vibrationsmolekylära absorptionslinjerna finns. Med hjälp av denna kam och en FTS har vi för första gången demonstrerat frekvenskamspektroskopi över 5 μm. Vi har detekterat bredbandsspektra av flera molekylära gaser och har, för mättider på 1 s, uppnått detektionsgränser ner till låga ppb halter för CH4, NO och CO.Det andra syftet har varit mer applikationsorienterat: att använda frekvenskamspektroskopi i förbränningsmiljö och under atmosfäriska förhållanden för snabb och känslig multiämnesdetektion. Vi har för första gången demonstrerat kavitetsförstärkt optisk frekvenskamspektroskopi i en flamma, där vi har detekterat högtemperaturspektra av H2O och OH i det när-infraröda området med användning av FTS och visat teknikens potential för termometrisk karakterisering av flammor. För applikationer som kräver en kort mättid och hög känslighet under atmosfäriska förhållanden har vi utvecklat ett detektionssystem baserat på Vernier-spektroskopi med kontinuerlig filtrering, vilket är en dispersionsbaserad teknik, för första gången i det mid-infraröda frekvensområdet. Det befanns att spektrometern var känslig, snabb, robust och kapabel till multiämnesdetektion med en detektionsgräns på 2 ppb för CH4 för korta mättider (25 ms).
7

High Precision Comb-Assisted Molecular Spectroscopy in the Mid-Infrared

Alsaif, Bidoor 06 1900 (has links)
In several fields, such as biology, chemistry, combustion and environmental science, laser absorption spectroscopy represents an invaluable tool for the detection and identification of a variety of molecular species in the gas phase. For this detection to be quantitative, it is of paramount importance to rely on accurate spectroscopic parameters for the involved absorption lines in terms of line strength, line center frequency, pressure broadening, and pressure shift coefficients. The mid-infrared region offers the most favorable conditions for sensitive and chemically selective detection. The sensitivity derives from the presence of intense fundamental ro-vibrational transitions of molecules, whereas chemical selectivity relates to the unique absorption spectrum that molecules possess in the mid-IR region, thereby known as the fingerprint region. In this thesis, we combine the accelerating technology of optical frequency combs (OFC), which are powerful tools for accurate optical frequency measurements, with the wide tunability and single line emission in the mid-IR of extended cavity quantum cascade lasers (EC-QCL), to perform highly resolved, accurate and sensitive measurements in the fingerprint region, from 7.25 to 8 μm. Specifically, we have been able to lock for the first time the optical frequency of an EC-QCL to an OFC by utilizing nonlinear optics in the form of sum frequency generation (SFG) (Lamperti, AlSaif et al., 2018) and have exploited this comb-locked EC-QCL for an accurate survey of the entire ν1 ro-vibrational band of one of the most important greenhouse gases, nitrous oxide (N2O). The developed spectrometer is able to operate over a wide region of ~ 100 cm-1, in a fully automated fashion, while affording a 63 kHz uncertainty on the retrieved line center frequencies. The measurement allowed us to determine very accurately rotational constants of both ground and excited states of the ν1 band of N2O through the measurements of tens of lines of the P and R branches (AlSaif et al., JQSRT 2018). The spectrometer was then upgraded with a more recent and narrower linewidth EC-QCL to perform sub-Doppler saturated spectroscopy on the same N2O sample at a spectral resolution below 1 MHz, the sharpest ever observed with this type of laser. Finally, we worked at adding high sensitivity to the apparatus by introducing the gas in a high-finesse passive resonator and by developing a system to measure the intra-cavity absorption with cavity ring-down spectroscopy (CRDS) together with comb calibration.
8

Cavity enhanced optical sensing / Kavitetsförstärkt optisk detektion

Silander, Isak January 2015 (has links)
An optical cavity comprises a set of mirrors between which light can be reflected a number of times. The selectivity and stability of optical cavities make them extremely useful as frequency references or discri­mi­nators. With light coupled into the cavity, a sample placed inside a cavity will experience a significantly increased interaction length. Hence, they can be used also as amplifiers for sensing purposes. In the field of laser spectroscopy, some of the most sensitive techniques are therefore built upon optical cavities. In this work optical cavities are used to measure properties of gas samples, i.e. absorption, dispersion, and refractivity, with unprecedented precision. The most sensitive detection technique of all, Doppler-broadened noise-immune cavity enhanced optical heterodyne molecular spectrometry (Db NICE-OHMS), has in this work been developed to an ultra-sensitive spectroscopic technique with unprecedented detection sensitivity. By identifying limiting factors, realizing new experimental setups, and deter­mining optimal detection conditions, the sensitivity of the technique has been improved several orders of magnitude, from 8 × 10-11 to 9 × 10-14 cm-1. The pressure interval in which NICE-OHMS can be applied has been extended by deri­vation and verification of dispersions equations for so-called Dicke narrowing and speed dependent broadening effects. The theoretical description of NICE-OHMS has been expanded through the development of a formalism that can be applied to the situations when the cavity absorption cannot be considered to be small, which has expanded the dynamic range of the technique. In order to enable analysis of a large number of molecules at their most sensitive transitions (mainly their funda­mental CH vibrational transitions) NICE-OHMS instrumentation has also been developed for measurements in the mid-infrared (MIR) region. While it has been difficult to realize this in the past due to a lack of optical modulators in the MIR range, the system has been based on an optical para­metric oscillator, which can be modulated in the near-infrared (NIR) range. As the index of refraction can be related to density, it is possible to retrieve gas density from measurements of the index of refraction. Two such instru­men­tations have been realized. The first one is based on a laser locked to a measure­ment cavity whose frequency is measured by compassion with an optical frequency comb. The second one is based on two lasers locked to a dual-cavity (i.e. one reference and one measurement cavity). By these methods changes in gas density down to 1 × 10-9 kg/m3 can be detected. All instrumentations presented in this work have pushed forward the limits of what previously has been considered measurable. The knowledge acquired will be of great use for future ultrasensitive cavity-based detection methods.
9

Fabrication and Characterization of Silicon Photonic Devices

Abdullah Al Noman (11251179) 11 August 2021 (has links)
Silicon photonics has become one of the leading candidates for the next generation optical communication platform. In addition to being an inexpensive material and compatible with Complementary metal–oxide–semiconductor (CMOS) manufacturing, silicon exhibits low absorption at optical telecommunication bands. However, high propagation loss and poor light confinement in narrow Si waveguides have limited high-density optical integration.<br>In this work, we show the fabrication and characterization of a novel type of devices named E-skid devices that can reduce the skin depth and suppress the large spatial content of evanescent light. These devices use artificial anisotropic dielectric metamaterial to suppress the evanescent waves. Beside E-skid devices, we also discuss the fabrication and experimental characterization of mode filters using Silicon on Insulator that can block the fundamental TE0 and allow the higher order modes to pass through using Multi Mode Interference.<br>In this work, the mode is filtered using radiation, not by reflection.<br>Beside Silicon, Silicon Nitride has also gained much interest because of its low loss, smaller nonlinear absorption and higher Kerr effect. Silicon Nitride waveguides have widely<br>been used for lots of applications specially the optical frequency comb generation. One special case of coherent optical frequency comb is Soliton in which case the non-linearity and dispersion cancel each other’s effect and keep the pulse without distortion. In this work, we described the Silicon Nitride fabrication process and did a comparative analysis with other research groups who fabricates similar devices. We tried to improve our process by inserting a few additional steps in our fabrication process. We also investigated our process step by step and found out reasons for our low quality factor and low yield. We found a few factors that might be responsible for the low quality factor and addressed them. We fabricated real devices using our modified process and saw improvement in quality factors, yield and thermal performance of the devices.<br>Finally, we describe an edge polishing method for Silicon Nitride microring resonator devices, which we developed from scratch and we can polish edges down to sub-micron level. Thus, the edges become optically flat and it allowed us to do heterogeneous integration with an Indium Phosphide chip. This paves away for some exciting opportunities like on-chip frequency comb generation.<br><br>
10

Frequency Comb Experiments and Radio Frequency Instrumentation Analysis for Optical Atomic Clocks

Ryan J Schneider (14187461) 29 November 2022 (has links)
<p>Space-based global navigation and precision timing systems are critical for modern infrastructure. Atomic clock technology has increased the precision of these systems so that they are viable for military operations, navigation, telecommunications, and finance. Advances in optical atomic clocks, based on optical frequencies, provide an opportunity for even more precise timing. Therefore, developments in chip-scale optical atomic clock technologies could lead to increased and more wide-spread application of this precision timing. One component of the optical atomic clock is the optical frequency comb which serves as an interface between optical and microwave frequencies. This thesis will cover experiments related to these optical frequency combs. A 2$\mu$m fiber laser was developed in order to test second harmonic devices required to stabilize an optical frequency comb. The laser was then employed to measure the operating wavelengths and efficiencies of non-linear devices. In addition, an analysis of the radio frequency instruments used to evaluate microwave outputs was conducted to determine whether a digital signal analyzer (oscilloscope) or an analog electronic spectrum analyzer provides more accurate results for optical frequency comb based experiments.</p>

Page generated in 0.0993 seconds