• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 442
  • 120
  • 109
  • 55
  • 43
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 969
  • 969
  • 148
  • 125
  • 119
  • 114
  • 100
  • 91
  • 79
  • 79
  • 72
  • 66
  • 63
  • 60
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

INFLUENCE OF TISSUE ABSORPTION AND SCATTERING ON DIFFUSE CORRELATION SPECTROSCOPY BLOOD FLOW MEASUREMENTS

Irwin, Daniel 01 January 2011 (has links)
This investigation evaluates the influences of optical property assumptions on nearinfrared diffuse correlation spectroscopy (DCS) flow index measurements. Independent variation is induced in optical properties, absorption coefficient (μa) and reduced scattering coefficient (μs’), of liquid phantoms with concurrent measurements of flow indices. A hybrid instrument is incorporated consisting of a dual-wavelength (785 and 830 nm) DCS flow device to obtain flow indices and a frequency-domain tissue-oximeter for optical properties. Flow indices are calculated with measured μa and μs’ or assumed constant μa and μs’. Inaccurate μs’ assumptions produced much larger flow index errors than inaccurate μa. Underestimated/overestimated μs’ from -35%/+175% lead to flow index errors of +110%/-80% and underestimated/overestimated μa from -40%/+150% lead to -20%/+40%, regardless of wavelength. Analysis of a clinical study involving human head and neck tumors indicates flow index errors due to inter-patient optical property variations up to +280%. Collectively, these findings suggest that studies involving significant μa and μs’ changes should measure flow index and optical properties simultaneously to accurately extract blood flow information. This study provides unique insight through the use of liquid phantoms, hybrid instrumentation, incorporation of measurement errors and a generalization into DCS flow index errors due to the influences of optical properties.
482

Theory and Modelling of Functional Materials

Kocevski, Vancho January 2015 (has links)
The diverse field of material research has been steadily expanding with a great help from computational physics, especially in the investigation of the fundamental properties of materials. This has driven the computational physics to become one of the main branches of physics, allowing for density functional theory (DFT) to develop as one of the cornerstones of material research. Nowdays, DFT is the method of choice in a great variety of studies, from fundamental properties, to materials modelling and searching for new materials. In this thesis, DFT is employed for the study of a small part of this vast pool of applications. Specifically, the microscopic characteristics of Zn1-xCdxS alloys are studied by looking into the evolution of the local structure. In addition, the way to model the growth of graphene on Fe(110) surface is discussed. The structural stability of silicon nanocrystals with various shapes is analysed in detail, as well. DFT is further used in studying different properties of semiconductor nanocrystals. The size evolution of the character of the band gap in silicon nanocrystals is investigated in terms of changes in the character of the states around the band gap. The influence of various surface impurities on the band gap, as well as on the electronic and optical properties of silicon nanocrystals is further studied. In addition, the future use of silicon nanocrystals in photovoltaic devices is examined by studying the band alignment and the charge densities of silicon nanocrystals embedded in a silicon carbide matrix. Furthermore, the electronic and optical properties of different semiconductor nanocrystals is also investigated. In the case of the CdSe/CdS and CdS/ZnS core-shell nanocrystals the influence of the nanocrystal size and different structural models on their properties is analysed. For silicon nanocrystal capped with organic ligands, the changes in the optical properties and lifetimes is thoroughly examined with changes in the type of organic ligand.
483

Development and characterization of PECVD grown silicon nanowires for thin film photovoltaics

Adachi, Michael Musashi January 2012 (has links)
Nanowires are high aspect ratio nanostructures with structural diameters on the order of nanometers to hundreds of nanometers. In this work, the optical properties of highly crystalline silicon nanowires grown by the Vapor-Liquid-Solid (VLS) method surrounded by a thin silicon shell are investigated for thin film solar cell applications. Crystalline core nanowires were surrounded by a conformal amorphous silicon shell and exhibited extremely high absorption of 95% at short wavelengths (??<550nm) and very low absorption of <2% at long wavelengths (??>780nm). Nanowires were disordered with average lengths ranging from 1.3 to 2.3 ??m. The absorption increased at longer wavelengths as a function of amorphous shell radial thickness, significantly higher than the absorption of a reference planar a-Si thin film. In addition, a new method to grow epitaxial silicon at low growth temperatures on glass substrates is demonstrated. Highly crystalline silicon nanowires with an average length of 800 nm were used as the seed crystal to grow an epitaxial silicon shell around, using a low temperature process. The nanowire core was grown at 400??C, and the shell was grown at about 150??C. Such epitaxial grown nanowire shells could be used as a building block for nanotechnology applications in which epitaxial silicon is required over large-area substrates such as glass. Furthermore, the epitaxial silicon shell nanowires exhibited absorption > 90% up to a wavelength of 600 nm, which was significantly higher than that of a planar 1 ??m nanocrystalline silicon film. The high absorption exhibited by nanowires with both amorphous and crystalline silicon shells makes them promising for use in photovoltaic and photodetector applications. Silicon nanowires were incorporated into thin film silicon n-i-p solar cells in two configurations: as a nanostructured back reflector, and in core-shell nanowire solar cells. First, domed-shaped nanostructures were fabricated by coating an array of silicon nanowires with a thick layer of amorphous silicon. After the nanostructures were coated with Ag and ZnO:Al, they were used as the backreflector in an n-i-p amorphous silicon solar cell. The nanostructured backreflector improved light scattering within the solar cell, leading to a short circuit current of 14.8mA/cm2, a 13% improvement over that of the planar device, which had a Jsc=13.1 mA/cm2. The overall conversion efficiency of nanostructured backreflector device was ?? = 8.87%, a strong improvement over that of the planar device (?? = 7.47%). Silicon nanowires were also incorporated into core-shell nanowire solar cells. The first device architecture investigated consisted of nanowires incorporated as the intrinsic absorption layer between a planar n+ layer and conformal p+ layer. However, the fabricated devices exhibited very low collection efficiencies of < 2% due to the presence of impurities incorporated by the catalyst used during nanowire growth. As a result, the device architecture was modified such that the nanowires provided high aspect ratio structure to enhance absorption in a shell material, but the nanowires themselves were not used as an active device component. Nanowire core-amorphous silicon shell solar cells, on average 525 nm long and about 350nm in total diameter, exhibited an impressive low total reflectance of <3% in the wavelength interval of 410 nm < ?? < 640nm and exceeded 10% only for ??>700 nm. As a result, the core-shell nanowire devices exhibited enhancement in quantum efficiency at low wavelengths, ?? < 500nm and high wavelengths, ?? > 600nm as compared to a planar device. The resulting short circuit current was 14.1 mA/cm2 compared to 12.3 mA/cm2 for the planar device, an improvement of ~15%. Nanowire core- nanocrystalline silicon shell solar cells were also fabricated using the same device architecture. Core-shell nanowires with an average length of 800 nm showed significant enhancement in quantum efficiency over all wavelengths as compared to a 1 ??m thick planar solar cell. The core-shell nanowire device had a short-circuit current of 16.2 mA/cm2 , a ~25% improvement over that of the planar thin film solar cell (Jsc=13.0 mA/cm2). Core-shell nanowire devices did, however, have lower open circuit voltage compared to the planar device. Non-conformal coverage was found to be a limiting factor in device performance, but further improvements can be expected with optimization of the n-i-p deposition conditions and nanowire density.
484

Generation of squeezed light in semiconductors

Schucan, Gian-Mattia January 1999 (has links)
We present experimental studies based on all three methods by which the generation of squeezed light in semiconductors has thus far been demonstrated experimentally: Fourwave mixing, multi-photon absorption and direct generation at the source. Four-wave mixing was used to generate femtosecond-pulsed quadrature squeezed light by cross-phase modulation in single-crystal hexagonal CdSe at wavelengths between 1.42 and 1.55 μm. We measured 0.4 dB squeezing (1.1 dB is inferred at the crystal) using 100 fs pulses. The wavelength and the intensity dependence, as well as variations in the local oscillator configuration were investigated. At higher intensities squeezing was shown to deteriorate owing to competing nonlinear processes. We also characterised the nonlinear optical properties of CdSe in this wavelengths range using an interferometric autocorrelator. In addition, we studied the feasibility of extending this technique to AlGaAs waveguides. The key problems are addressed and solutions are proposed. In a different experiment we used an AlGaAs waveguide to demonstrate for the first time photon-number squeezing by multi-photon absorption. By tuning the pump energy through the half bandgap energy we could effectively select two- or three-photon absorption as the dominant mechanism. Squeezing by these two mechanisms could be clearly distinguished and was found to be in good agreement with longstanding theoretical predictions. We also established the generality of the effect, by demonstrating the same mechanism in organic semiconductors, where it led to the first ever observation of squeezed light in an organic material. Finally, we present our measurements of photon-number squeezing in high-efficiency double heterojunction AlGaAs light-emitting diodes. We measured squeezing of up to 2.0 dB. In addition, we observed quantum noise correlations when several of these devices were connected in series.
485

Hierarchical Semiconductor, Metal and Hybrid Nanostructures and the Study of their Light-matter Interactions

Lee, Anna 16 August 2013 (has links)
The work presented in this thesis explores the optical properties of hierarchical structures composed of nanoscale building blocks ranging from metals to semiconductors and composites, organized through bottom-up design methods. 1) By following the dynamic generation of hot-spots in self-assembled chains of gold nanorods (NRs), we have established a direct correlation between ensemble-averaged surface-enhanced Raman scattering (SERS) and extinction properties of these nanoscale chains. Experimental results were supported by comprehensive finite-difference time-domain simulations (FDTD). The relationship established between the structure of nanorod ensembles and their optical properties provides a basis for producing dynamic, solution-based, plasmonic platforms for applications ranging from sensing to nanoelectronics. 2) We report theoretical and experimental analyses of the optical properties of side-by-side assembled gold NRs. Comprehensive FDTD simulations showed a blue shift of the surface plasmon resonance in the side-by-side assembled NR structures and a reduction of electric field intensity as the number of NRs per stack increased. These results were experimentally verified via extinction measurements and ensemble-averaged SERS spectroscopy. The experimental results and electrodynamic simulations were found to be in agreement. 3) The efficacy of hollow core photonic crystal fibers (HCPCF) as a platform for SERS spectroscopy was demonstrated. SERS measurements carried out using this platform showed the capability to monitor minute amounts of ligands on the surface of gold nanoparticles and SERS signals from HCPCF exhibited a 10-fold enhancement. Using the exchange of cetyltrimethylammonium bromide with α-methoxy-ω mercaptopolyethylene glycol on the surface of gold nanorods as an exemplary system, we showed the feasibility of using HCPCF SERS to monitor the change in surface chemistry of NRs. 4) Facile, solution-phase formation of ordered, lamellar quantum dot (QD) arrays exhibiting structural integrity and temporal stability, without the need for chemical crosslinking, was achieved. While micrometers in diameter, they are typically only two to three QD layers thick. These structures are capable of carrying a cargo of water-soluble ions, molecules, metal nanoparticles, or biomolecules. The photoluminescence of the host CdSe QDs were enhanced by the encapsulation of gold nanoparticles within the lamellae, demonstrating the ability to modulate their properties through the cargo they carry. 5) This chapter explores a bottom-up method to produce a metamaterial designed to function as an optical cloak in the visible range. A composite material consisting of an array of silver nanowires (NWs) in a dielectric host has been produced based on the theory of a non-magnetic optical cloak. The required radial array of silver NWs was achieved by electroless deposition of the metal into the channels of a porous alumina structure grown perpendicularly from the curved surface of a micrometer scale aluminum wire. The functionality of the cloak was demonstrated by partial cloaking in the visible range (540 nm).
486

Hierarchical Semiconductor, Metal and Hybrid Nanostructures and the Study of their Light-matter Interactions

Lee, Anna 16 August 2013 (has links)
The work presented in this thesis explores the optical properties of hierarchical structures composed of nanoscale building blocks ranging from metals to semiconductors and composites, organized through bottom-up design methods. 1) By following the dynamic generation of hot-spots in self-assembled chains of gold nanorods (NRs), we have established a direct correlation between ensemble-averaged surface-enhanced Raman scattering (SERS) and extinction properties of these nanoscale chains. Experimental results were supported by comprehensive finite-difference time-domain simulations (FDTD). The relationship established between the structure of nanorod ensembles and their optical properties provides a basis for producing dynamic, solution-based, plasmonic platforms for applications ranging from sensing to nanoelectronics. 2) We report theoretical and experimental analyses of the optical properties of side-by-side assembled gold NRs. Comprehensive FDTD simulations showed a blue shift of the surface plasmon resonance in the side-by-side assembled NR structures and a reduction of electric field intensity as the number of NRs per stack increased. These results were experimentally verified via extinction measurements and ensemble-averaged SERS spectroscopy. The experimental results and electrodynamic simulations were found to be in agreement. 3) The efficacy of hollow core photonic crystal fibers (HCPCF) as a platform for SERS spectroscopy was demonstrated. SERS measurements carried out using this platform showed the capability to monitor minute amounts of ligands on the surface of gold nanoparticles and SERS signals from HCPCF exhibited a 10-fold enhancement. Using the exchange of cetyltrimethylammonium bromide with α-methoxy-ω mercaptopolyethylene glycol on the surface of gold nanorods as an exemplary system, we showed the feasibility of using HCPCF SERS to monitor the change in surface chemistry of NRs. 4) Facile, solution-phase formation of ordered, lamellar quantum dot (QD) arrays exhibiting structural integrity and temporal stability, without the need for chemical crosslinking, was achieved. While micrometers in diameter, they are typically only two to three QD layers thick. These structures are capable of carrying a cargo of water-soluble ions, molecules, metal nanoparticles, or biomolecules. The photoluminescence of the host CdSe QDs were enhanced by the encapsulation of gold nanoparticles within the lamellae, demonstrating the ability to modulate their properties through the cargo they carry. 5) This chapter explores a bottom-up method to produce a metamaterial designed to function as an optical cloak in the visible range. A composite material consisting of an array of silver nanowires (NWs) in a dielectric host has been produced based on the theory of a non-magnetic optical cloak. The required radial array of silver NWs was achieved by electroless deposition of the metal into the channels of a porous alumina structure grown perpendicularly from the curved surface of a micrometer scale aluminum wire. The functionality of the cloak was demonstrated by partial cloaking in the visible range (540 nm).
487

Non-linear Optical Properties Of Two Dimensional Quantum Well Structures

Aganoglu, Ruzin 01 February 2006 (has links) (PDF)
In this work optical properties of two dimensional quantum well structures are studied. Variational calculation of the eigenstates in an isolated quantum well structure with and without the external electrical field is presented. At weak fields a quadratic Stark shift is found whose magnitude depends strongly on the finite well depth. It is observed that under external electrical field, the asymmetries due to lack of inversion symmetry leads to higher order nonlinear optical effects such as second order optical polarization and second order optical susceptibility.
488

Optical characteristics of the suspended sediment in the High Energy Benthic Boundary Layer Experiment

Spinrad, Richard W. 02 March 1982 (has links)
Graduation date: 1982
489

Electrochromic Nickel – Tungsten Oxides : Optical, Electrochemical and Structural Characterization of Sputter-deposited Thin Films in the Whole Composition Range

Green, Sara January 2012 (has links)
This thesis investigates the electrochromic NixW1-x oxide thin film system, where 0 &lt; x &lt; 1. The thin films were deposited by reactive DC magnetron co-sputtering from one Ni and one W metal target. In addition, Ni oxide was deposited with water vapor added to the sputtering gas. The different compositions were structurally characterized by X-ray diffraction, X-ray photoelectron-, Rutherford backscattering- and Raman spectroscopy. Possible nanostructures were studied by ellipsometry together with effective medium theory. Optical and electrochemical properties were investigated by spectrophotometry and cyclic voltammetry in 1 M lithium perchlorate in propylene carbonate (Li-PC). Li-PC electrolyte was used as it is being compatible with both W and Ni oxides. Few studies have previously been made on Ni oxides in Li-PC. Films with high Ni content, 0.85 &lt; x &lt; 1, were polycrystalline and all other films were amorphous. W-rich films, x &lt; 0.5, consisted of a mixture of W oxide and NiWO4 -phases, and the Ni-rich samples, x &gt; 0.5, probably consisted of hydrated Ni oxide and NiWO4 -phases. Films with 0 &lt; x &lt; 0.3 showed electrochromic properties similar to W oxide, and films with 0.7 &lt; x &lt; 1 behaved as Ni oxide. For 0.4 &lt; x &lt; 0.7 no optical change was seen. At the border of cathodic electrochromic and non-electrochromic behavior, i.e. x ~ 0.4, the sample behaved as an optically passive intercalation material. The transmittance change was 0.45 and 0.15 for the W-rich and Ni-rich films, respectively. Ni addition to W oxide improved the coloration efficiency. For the Ni-rich films the charge insertion/extraction and optical modulation was low and an aging effect resulted in strong bleaching of the samples. The advantage of W addition to Ni oxide was that the transparency at the bleached state was enhanced. Moreover, it was found that the hydrous character of the Ni oxide had a large impact on the electrochromic performance, both when electrochemically cycled in KOH and in the non-aqueous Li-PC.
490

Coherent multiwavelength sources for tropospheric aerosol lidar

Rawle, Christopher B., n/a January 2005 (has links)
The monitoring and study of the earth�s atmosphere is becoming an increasingly important task given the current uncertainties in climate prediction. Areas where lidar has been used to further understanding of the atmosphere include monitoring of greenhouse gases, global warming, stratospheric ozone depletion, photochemical smog and aerosol photochemistry. However, the potentially severe long term effects of anthropogenic aerosols on earth�s biosphere are poorly understood. This project seeks to apply state of the art laser technology to develop an innovative multiwavelength lidar system capable of providing new information and new insights into the field of tropospheric aerosol lidar. Several novel tunable laser and laser-like sources have been investigated and developed for the purpose of tropospheric aerosol lidar at The National Institute of Water and Atmospheric Research (Niwa), Central Otago. Multiwavelength operation in the visible and near infrared portion of the spectrum has been emphasised with the sources developed collectively spanning the wavelength interval of 400-1369 nm. The laser sources investigated were the LiF:F2+ colour centre, Titanium Sapphire (Ti:sapphire) and barium nitrate Raman lasers. In addition to the laser sources, the β-barium borate optical parametric oscillator (BBO OPO) was characterised. For each of the sources, lidar relevant aspects were studied. The results recorded include conversion efficiency with respect to the pump source, linewidth and tuning characteristics, beam quality, temporal behaviour, and device reliability and ruggedness. It was found that the LiF:F2+ laser offered significantly lower threshold, broader tuning and higher output pulse energies than the Ti:sapphire laser in the 900-1000 nm region. The high optical gain of the LiF:F2+ medium facilitated cavity optical alignment and operation of the system. The high gain also resulted in temporal behaviour well suited to the existing Niwa lidar detection scheme. When using a 5 ns pump source, amplified spontaneous emission (ASE) was found to limit the laser tuning range and efficiency. The barium nitrate Raman laser was based on a simple linear cavity arrangement which resulted in a compact and robust device with no moving components. The stimulated Raman scattering process offers relatively narrow linewidth laser operation at the first and second Stokes wavelengths of 1197 nm and 1369 nm respectively. This laser offered efficient operation once the high operation threshold was reached. Second harmonic generation was used to extend the number of potential lidar transmitter lines produced. The barium nitrate Raman laser possessed high beam divergence and a maximum of three discrete transmitter wavelengths. The BBO OPO used a type I collinear signal resonant configuration. A plane-plane cavity configuration with pump reflection was found to provide simplicity of design, low threshold, highly efficient operation and output pointing stability. The BBO OPO signal wavelength could be tuned over the wavelength interval of 400-700 nm. The disadvantage of the plane cavity was high output beam divergence. However, this was successfully brought within the required limits through the use of a 40 mm long cavity in conjunction with an expanding and collimating telescope. As a result of the study, a Tunable lidar Transmitter (TLT) system based on the BBO OPO was designed and constructed at the Physics Department. The TLT was computer-controlled using custom written software and constructed in a self contained modular manner with all required mechanical, electrical and optical components. A user manual was also written to accompany the TLT. The TLT was installed at Niwa and was successfully used to gather preliminary multiwavelength lidar data. The TLT BBO OPO threshold occurred for a pump energy of 5.2 mJ (10.6 MW/cm2) and had a maximum slope efficiency of 53%. Signal efficiency varied from 24-41-35% over the intervals of 410-500-600 nm. A maximum signal energy of 21 mJ was obtained for a signal wavelength of 492 nm when using the maximum available pump energy of 42 mJ. OPO signal linewidth varied from 0.1-1-8 nm over the signal wavelength intervals of 400-600-700 nm. The associated OPO finesse varied between 370 and 100 as the signal wavelength was tuned over the wavelength interval of 400-600 nm. The temporal behaviour of the BBO OPO was a slowly varying function of pump energy and closely followed the temporal behaviour of the pump laser, making it well suited to the existing Italian lidar detection and timing scheme.

Page generated in 0.1222 seconds