• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 442
  • 120
  • 109
  • 55
  • 43
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 969
  • 969
  • 148
  • 125
  • 119
  • 114
  • 100
  • 91
  • 79
  • 79
  • 72
  • 66
  • 63
  • 60
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Μη-γραμμική οπτική σε σύνθετες δομές κβαντικών τελειών ZnO

Χατζόπουλος, Ιωάννης 29 June 2015 (has links)
Στο επίκεντρο της παρούσας διπλωματικής εργασίας, βρίσκεται η μελέτη μη γραμμικών οπτικών ιδιοτήτων, σύνθετων δομών κβαντικών τελειών οξειδίου του ψευδαργύρου (ZnO). Αρχικά θα κάνουμε μια γρήγορη επισκόπηση των ιδιοτήτων των νανοδομημένων συστημάτων, περίπτωση των οποίων αποτελούν οι ημιαγώγιμες κβαντικές τελείες, καθώς και οι σύνθετες νανοδομές του ZnO, ενώ θα επισημάνουμε και τον στόχο που καλείται να εκπληρώσει η εργασία μας. Προκειμένου να υπολογίσουμε την ηλεκτρονική δομή του συστήματος που εξετάζουμε, χρησιμοποιούμε την μέθοδο PMM (Potential Morphing Method), τις βασικές αρχές της οποίας παραθέτουμε στο δεύτερο κεφάλαιο. Στο επόμενο κεφάλαιο παρουσιάζουμε το θεωρητικό μας μοντέλο, βασισμένο στην μέθοδο των πλατών πιθανότητας για τον αναλυτικό υπολογισμό της γραμμικής (1) και της μη γραμμικής οπτικής επιδεκτικότητας (3), οι οποίες και αποτυπώνουν τις οπτικές ιδιότητες του συστήματος μας. Τέλος περιγράφουμε την δομή του σύνθετου συστήματος κβαντικών τελειών πυρήνα/κελύφους (core/shell quantum dots), παραθέτουμε τα αποτελέσματα του υπολογισμού της ηλεκτρονικής δομής και παρουσιάζουμε την συμπεριφορά της γραμμικής, της μη γραμμικής καθώς και της ολικής επιδεκτικότητας του συστήματος που εξετάζουμε, μέσω διαγραμμάτων και του απαραίτητου σχολιασμού των αποτελεσμάτων μας. / At the center of our interest in this thesis lies the study of nonlinear optical properties of complex Zinc Oxide (ZnO) quantum dots structures. At first we will have a short review of the nanostructured systems properties in general and then we will discuss the properties of semiconductor quantum dots as well as the complex ZnO nano-structures. We will also notify the goal of this thesis. In order to calculate the electronic structure of our investigating system we will use the PMM (Potential Morphing Method) method, the basic principles of which we quote on the second chapter. In the next chapter we present our theoretical model, based in the probability amplitudes method, for the analytical calculation of both the linear (1) and nonlinear susceptibility (3) which illustrate the optical properties of our system. At the end we describe our complex core/shell quantum dots system, we quote the results of the electronic structure calculation and we present the behaviour of linear, nonlinear as well as the total susceptibility of our system through graphs and the necessary discussion of our results.
472

Applications of computer-generated holograms in optical testing

Loomis, John Scott January 1980 (has links)
Optical testing often requires a measurement of the phase difference between light from two different optical systems. One system is a master or reference system, and the other is a sample or test system. In the optical shop, the reference may be a precision optical surface and the test system may be a newly fabricated surface. A computer generated hologram is a geometric pattern that can be used as a precise reference in an optical test. Computer-generated holograms can be used to make reference systems that would be very difficult to make by other methods. Various encoding methods for making computer-generated holograms are discussed, and a new method is presented that can easily be used on image recorders intended for image processing applications. This general encoding method has many characteristics in common with earlier computer-generated holograms. Examples are given to demonstrate the properties of synthetic holograms and the differences among different encoding techniques. Geometric ray tracing is an essential part of the process of developing holograms for optical systems. A computer ray-trace code was developed to model the optical performance of equipment used in optical testing. This program was used to obtain numeric coefficients that describe the optical properties (optical path) needed to define a reference wavefront. A review of interferometer design leads to a discussion of how the hologram functions as a part of the interferometer and of the limitations to the computer-generated hologram. The diffraction pattern from the hologram, observed in the focal plane of a lens, is the key to understanding the use and limitations of the hologram in an interferometer. A detailed prescription is given for making a computer-generated hologram for a commercial interferometer designed for use with holograms. Problems of finding the proper focal point, the correct hologram size, and preparation of the final hologram image are discussed. An example of an actual test is included. Finally, an analysis of various errors encountered and the limitations of the methods used is presented. Within these limitations, computer-generated holograms can easily and routinely be used to test aspheric optical components.
473

Growth and Characterization of ZnO Nanostructures

Syed, Abdul Samad January 2011 (has links)
A close relation between structural and optical properties of any semiconductor material does exist. An adequate knowledge and understanding of this relationship is necessary for fabrication of devices with desired optical properties. The structural quality and hence the optical properties can be influenced by the growth method and the substrate used. The aim of this work was to investigate the change in optical properties caused by growth techniques and substrate modification. To study the influence of growth technique on optical properties, ZnO nanostructures were grown using atmospheric pressure metal organic chemical vapor deposition (APMOCVD) and chemical bath deposition (CBD) technique. The structural and optical investigations were performed using scanning electron microscopy (SEM) and micro photoluminescence (μ-PL), respectively. The results revealed that the grown structures were in the shape of nano-rods with slightly different shapes. Optical investigation revealed that low temperature PL spectrum for both the samples was dominated by neutral donor bound excitons emission and it tends to be replaced by free exciton (FX) emission in the temperature range of 60-140K. Both excitonic emissions show a typical red-shift with increase in temperature but with a different temperature dynamics for both the sample and this is due to difference in exciton-phonon interaction because of the different sizes of nano-rods. Defect level emission (DLE) is negligible in both the sample at low temperature but it increased linearly in intensity after 130 K up to the room temperature.Modification in substrate can also play a significant role on structural and optical properties of the material. Specially variation in the miscut angle of substrate can help to control the lateral sizes of the Nanostructures and thus can help to obtain better structural andoptical quality. Also optical quality is a key requirement for making blue and ultraviolet LEDs. Therefore, ZnO Nanostructures were grown on SiC on-axis and off-axis substrates having different off-cut angles. Morphological investigation revealed thatgrown structures are epitaxial for the case when substrate off-cut angle is higher and deposition rate is low. Low temperature PL spectrum of all the samples was dominated by neutral donor bound excitons and free exciton emission become dominant at 100 K for all the samples which completely eliminate the neutral donor bound excitonic emission at 160K. Two electron satellite of the neutral donor bound excitons and LO phonons of excitonic features are also present. A typical red-shift in excitonic features was evident in temperature dependence measurement. Red-shift behavior of free exciton for all the samples was treated by applying Varshni empirical expression and several important parameter, such as, the Debye temperature and the band gap energy value was extracted. Thermal quenching behavior was also observed and treated by thermal quenching expression and value of the activation energy for non-radiative channel was extracted. The results that are obtained demonstrate a significant contribution in the fields of ZnO based nano-optoelectronics and nano-electronics.
474

Phototriggers for a liquid crystal-based optical switch

Burnham, Kikue Sugiyama 08 1900 (has links)
No description available.
475

Luminescence properties of SrₓCa₁₋ₓS:Cu thin film phosphors for flat panel displays

Mohammed, Edris 12 1900 (has links)
No description available.
476

Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies

Yi, Bingqi 16 December 2013 (has links)
This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape and refractive index, the influence of ice particle surface roughening on the global cloud radiative effect, and the simulations of the global contrail radiative forcing. In the first part of this dissertation, the effects of dust non-spherical shape on radiative transfer simulations are investigated. We utilize a spectral database of the single-scattering properties of tri-axial ellipsoidal dust-like aerosols and determined a suitable dust shape model. The radiance and flux differences between the spherical and ellipsoidal models are quantified, and the non-spherical effect on the net flux and heating rate is obtained over the solar spectrum. The results indicate the particle shape effect is related to the dust optical depth and surface albedo. Under certain conditions, the dust particle shape effect contributes to 30% of the net flux at the top of the atmosphere. The second part discusses how the ice surface roughening can exert influence on the global cloud radiative effect. A new broadband parameterization for ice cloud bulk scattering properties is developed using severely roughened ice particles. The effect of ice particle surface roughness is derived through simulations with the Fu-Liou and RRTMG radiative transfer codes and the Community Atmospheric Model. The global averaged net cloud radiative effect due to surface roughness is around 1.46 Wm-2. Non-negligible increase in longwave cloud radiative effect is also found. The third part is about the simulation of global contrail radiative forcing and its sensitivity studies using both offline and online modeling frameworks. Global contrail distributions from the literature and Contrail Cirrus Prediction Tool are used. The 2006 global annual averaged contrail net radiative forcing from the offline model is estimated to be 11.3 mW m^(-2), with the regional contrail radiative forcing being more than ten times stronger. Sensitivity tests show that contrail effective size, contrail layer height, the model cloud overlap assumption, and contrail optical properties are among the most important factors.
477

Study of liquid crystalline light responsive dye-polyelectrolyte complexes

Zhang, Qian January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
478

Synthesis and Characterization of ZnO Nanostructures

Yang, Li Li January 2010 (has links)
One-dimensional ZnO nanostructures have great potential applications in the fields of optoelectronic and sensor devices.  Therefore, it is very important to realize the controllable growth of one-dimensional ZnO nanostructures and investigate their properties. The main points for this thesis are not only to successfully realize the controllable growth of ZnO nanorods (ZNRs), ZnO nanotubes (ZNTs) and ZnMgO/ZnO heterostructures, but also investigate the structure and optical properties in detail by means of scanning electron microscope (SEM), transmission electron microscope (TEM), resonant Raman spectroscopy (RRS), photoluminescence (PL), time resolved PL (TRPL), X-ray photoelectron spectroscopy (XPS) and Secondary ion mass spectrometry (SIMS). For ZNRs, on one hand, ZNRs have been successfully synthesized by a two-step chemical bath deposition method on Si substrates. The diameter of ZNRs can be well controlled from 150 nm to 40 nm through adjusting the diameter and density of the ZnO nanoparticles pretreated on the Si substrates. The experimental results indicated that both diameter and density of ZnO nanoparticles on the substrates determined the diameter of ZNRs. But when the density is higher than the critical value of 2.3×108cm-2, the density will become the dominant factor to determine the diameter of ZNRs. One the other hand, the surface recombination of ZNRs has been investigated in detail. Raman, RRS and PL results help us reveal that the surface defects play a significant role in the as-grown sample. It is the first time to the best of our knowledge that the Raman measurements can be used to monitor the change of surface defects and deep level defects in the CBD grown ZNRs. Then we utilized TRPL technique, for the first time, to investigate the CBD grown ZNRs with different diameters. The results show that the decay time of the excitons in ZNRs strongly depends on the diameter. The altered decay time is mainly due to the surface recombination process. A thermal treatment under 500°C can strongly suppress the surface recombination channel. A simple carrier and exciton diffusion equation is also used to determine the surface recombination velocity, which results in a value between 1.5 and 4.5 nm/ps. Subsequently, we utilized XPS technique to investigate the surface composition of as-grown and annealed ZNRs so that we can identify the surface recombination centers. The experimental results indicated that the OH and H bonds play the dominant role in facilitating surface recombination but specific chemisorbed oxygen also likely affect the surface recombination. Finally, on the basis of results above, we explored an effective way, i.e. sealing the beaker during the growth process, to effectively suppress the surface recombination of ZNRs and the suppression effect is even better than a 500oC post-thermal treatment. For ZNTs, the structural and optical properties have been studied in detail. ZNTs have been successfully evolved from ZNRs by a simple chemical etching process. Both temperature-dependent PL and TRPL results not only further testify the coexistence of spatially indirect and direct transitions due to the surface band bending, but also reveal that less nonradiative contribution to the emission process in ZNTs finally causes their strong enhancement of luminescence intensity. For ZnMgO/ZnO heterostructures, the Zn0.94Mg0.06O/ZnO heterostructures have been deposited on 2 inch sapphire wafer by metal organic chemical vapor deposition (MOCVD) equipment. PL mapping demonstrates that Mg distribution in the entire wafer is quite uniform with average concentration of ~6%. The annealing effects on the Mg diffusion behaviors in Zn0.94Mg0.06O/ZnO heterostructures have been investigated by SIMS in detail. All the SIMS depth profiles of Mg element have been fitted by three Gaussian distribution functions. The Mg diffusion coefficient in the as-grown Zn0.94Mg0.06O layer deposited at 700 oC is two orders of magnitude lower than that of annealing samples, which clearly testifies that the deposited temperature of 700 oC is much more beneficial to grow ZnMgO/ZnO heterostructures or quantum wells. This thesis not only provides the effective way to fabricate ZNRs, ZNTs and ZnMgO/ZnO heterostructures, but also obtains some beneficial results in aspects of their optical properties, which builds theoretical and experimental foundation for much better understanding fundamental physics and broader applications of low-dimensional ZnO and related structures. / Endimensionella nanostrukturer av ZnO har stora potentiella tillämpningar för optoelektroniska komponenter och sensorer. Huvudresultaten för denna avhandling är inte bara att vi framgångsrikt har realiserat med en kontrollerbar metod ZnO nanotrådar (ZNRs), ZnO nanotuber (ZNTs) och ZnMgO/ZnO heterostrukturer, utan vi har också undersökt deras struktur och optiska egenskaper i detalj. För ZNRs har diametern blivit välkontrollerad från 150 nm  ner till 40 nm. Den storlekskontrollerande mekanismen är i huvudsak relaterad till tätheten av ZnO partiklarna som är fördeponerade på substratet. De optiska mätningarna ger upplysning om att ytrekombinationsprocessen spelar en betydande roll för tillväxten av ZNR. En värmebehandling i efterhand  vid 500 grader Celsius eller användande av en förseglad glasbägare under tillväxtprocessen kan starkt hålla nere kanalerna för ytrekombinationen.För ZNT, dokumenterar vi inte bara samexistensen av rumsliga indirekta och direkta  övergångar på grund av bandböjning, men vi konstaterar också att vi har mindre icke-strålande bidrag till den optiska emissionsprocessen i ZNT. För ZnMgO/ZnO heterostrukturer konstaterar vi med hjälp av analys av Mg diffusionen i den växta och den i efterhand uppvärmda Zn(0.94)Mg(0.06)O filmen, att en tillväxt vid 700 grader Celsius är den mest lämpliga för att växa ZnMgO/ZnO heterostrukturer eller kvantbrunnar.   Denna avhandling ger en teoretisk och experimentell grund för bättre förståelse av grundläggande fysik och för tillämpningar av lågdimensionella strukturer. / SSF, VR
479

Synthesis and Optical Properties of ZnO Nanostructures

Yang, Li-Li January 2008 (has links)
One-dimensional ZnO nanostructures have great potential applications in the fields of optoelectronic and sensor devices. Therefore, it is really important to realize the controllable growth of one-dimensional ZnO nanostructures and investigate their properties. The main points for this thesis are not only to successfully realize the controllable growth of ZnO nonawires, nanorods and quantum dots (QDs), and also investigate the structure and optical properties in detail by the methods of scan electron microscope(SEM), transmission electron microscope(TEM), resonant Raman, photoluminescence(PL) and low-temperature time resolved PL spectrum. to grown ZnO nanorod arrays (ZNAs) on Si substrates. Firstly, the effects of ZnO nanoparticles, pH value of chemical solution, angel θ between substrate and beaker bottom on the structures of the samples were symmetrically investigated and the optimized growth condition to grow ZNAs can be concluded as follows: seed layer of ZnO nanoparticles, pH=6 and θ=70°. On the basis of these, the diameter of ZNAs was well controlled from 150nm~40nm through adjusting the diameter and density of the ZnO nanoparticles pretreated on the Si substrates. The experimental results indicated that both diameter and density of ZnO nanoparticles on the substrates determined the diameter of ZNAs. But when the density is higher than the critical value of 2.3×108cm-2, the density will become the dominant factor to determine the diameter of ZNAs. One the other hand, the optical properties of ZNAs were investigated in detail. The Raman and photoluminescence (PL) results showed that after an annealing treatment around 500oC in air atmosphere, the crystal structure and optical properties became much better due to the decrease of surface defects. The resonant Raman measurements excited by 351.1nm not only revealed that the surface defects play a significant role in the as-grown sample, but also suggested that the strong intensity increase of some Raman scatterings was due to both outgoing resonant Raman scattering effect and deep level defects scattering contribution for ZnO nanorods annealed from 500°C to 700°C. It is the first time to the best of our knowledge that the Raman measurements can be used to monitor the change of surface defects and deep level defects in the CBD grown ZnO nanorods. We have also presented, for the first time, a time resolved PL study in CBD grown ZnO nanorods with different diameters. The results show that the decay time of the excitons in the nanorods strongly depends on the diameter of the nanorods. The altered decay time is mainly due to the surface recombination process. The effective time constant related to the surface recombination velocity was deduced. A thermal treatment under 500°C will suppress the surface recombination channel, resulting in an improvement of the optical quality for the ZnO nanorods. This thesis not only provides the effective way to control the size of ZNAs, but also obtains some beneficial results in aspects of their optical properties, which builds theoretical and experimental foundation for much better and broader applications of one-dimensional ZnO nanostructures.
480

Harvesting Philosopher's Wool: A Study in the Growth, Structure and Optoelectrical Behaviour of Epitaxial ZnO

Lee, William (Chun-To) January 2008 (has links)
This thesis is about the growth of ZnO thin films for optoelectronic applications. ZnO thin films were grown using plasma assisted molecular beam epitaxy and were studied using various conventional and novel characterisation techniques. The significance of different growth variables on growth efficiency was investigated. The growth rate of ZnO films was found to be linearly dependent on the Zn flux under O-rich growth conditions. Under Zn-rich conditions, the growth rate was dependent on both atomic and molecular oxygen flux. By characterising the oxygen plasma generated using different RF power and aperture plate designs and correlating the results with the growth rates observed, it was found that atomic oxygen was the dominant growth species under all conditions. Molecular oxygen also participated in the growth process, with its importance dependent on the aperture plate design. In addition, an increase in growth temperature was found to monotonically decrease the growth rate. A growth rate of 1.4 Å/s was achieved at a growth temperature of 650 ℃ by using an oxygen flow rate of 1.6 standard cubic centimetres utilising a plasma source with a 276 hole plate operating at 400 W, and a Zn flux 1.4✕10¹⁵ atoms/cm²⋅s. Characterisation of the MBE grown thin films revealed that the qualities of ZnO thin films were dependent on the growth conditions. Experimental evidence suggested that a maximum adatom diffusion rate can be achieved under Zn-rich conditions, giving samples with the best structural quality. O-rich conditions in general led to statistical roughening which resulted in rough and irregular film surfaces. Experimental results also suggested that by increasing the atomic oxygen content and decreasing the ion content of the plasma, the excitonic emission of the ZnO thin films can possibly be improved. It was also found that the conductivity of the films can possibly be reduced by increasing the plasma ion content. By investigating the evolution of the buffer layer surface during the early stages of growth, dislocation nucleation and surface roughening were found to be important strain relief mechanisms in MBE grown ZnO thin films that affected the crystal quality. The usage of LT-buffer layers was found to improve substrate wetting, and was shown to significantly reduce dislocation propagation. Further strain reduction was achieved via the application of a 1 nm MgO buffer layer, and a significant reduction of carrier concentration and improvement in optical quality was subsequently observed. A carrier concentration of <1✕10¹⁶ cm⁻³ and a near band emission full width half maximum of 2 meV was observed for the best sample. The study of electrical characteristics using the variable magnetic field Hall effect confirmed the existence of a degenerate carrier and a bulk carrier in most MBE grown ZnO thin films. The bulk carrier mobility was measured to be ~120 - 150 cm²/Vs for most as-grown samples, comparable to the best reported value. A typical bulk carrier concentration of ~1✕10¹⁶ - 1✕10¹⁸ cm⁻³ was observed for as-grown samples. Annealing was found to increase the mobility of the bulk carrier to ~120 - 225 cm²/Vs and decrease the bulk carrier concentration by two orders of magnitude. Using time resolved photoluminescence, it was found that the radiative recombination in MBE grown ZnO thin films was dominated by excitonic processes, and followed a T³⁄² trend with temperature. A maximum radiative lifetime of 10 ns was observed for as-grown samples. The non-radiative lifetime in ZnO thin films was dominated by the Shockley-Read-Hall recombination processes. The modelling of the temperature dependence of the non-radiative lifetime suggested that an electron trap at ~0.065 eV and a hole trap at ~0.1 eV may be present in these samples. The application of time resolved photoluminescence also allowed the direct observation of carrier freeze-out in these ZnO films at low temperature.

Page generated in 0.1106 seconds