• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A wavevector imaging photoelectron spectrometer, with application to a magnetic overlayer system

Clarke, A. January 1987 (has links)
The work presented in this thesis may be considered in two main parts; firstly a description of the design and operation of a display type photoelectron spectrometer. Secondly a series of experiments investigating the electronic properties of thin epitaxial films (1-5 atomic layers) of cobalt grown on a clean single crystal copper (001) substrate. Conventional angle resolved photoelectron spectrometers of the deflection type are only capable of observing one point in the (E,θ,φ) space at a time. This is often perfectly acceptable if one is concerned with optimal resolution in order to perform accurate band mapping experiments. However certain experiments are essentially impossible, for instance the observation of the emitted photocurrent over all θ,φ at the fermi energy. This is partly because of the time limitations imposed by the necessity to keep the sample atomically clean in the U.H.V. environment. Several previous workers have tackled this problem by designing spectrometers that observe large sections of θ,φ space simultaneously, for a given energy. The first part of this work concerns the design and implementation of a display type spectrometer which embodies some new and quite novel features. Thin epitaxial films of ferromagnetic materials grown on non-magnetic substrates have long been of interest. Partly as a prototypical surface for the investigation of surface magnetism, and partly for the investigation of the changes induced in the magnetic properties as the dimensionality is reduced or as the lattice size is changed. The second part of this thesis concerns experiments using three different spectroscopies on a system of this type, specifically Co on Cu(001). Firstly, a photoemission study using the display spectrometer is presented, observations of the spin-split bands as a function of wavevector parallel to the surface are shown. Secondly an Auger electron study of the growth mode of the epitaxial film, together with a LEED I/V study of the changing lattice strain as a function of film thickness are presented. Although none of these measurements directly probe the magnetism of the films, they provide very necessary information in order to understand their behaviour.
2

Magnetic and junction properties of half-metallic double-perovskite thin films

Asano, H., Koduka, N., Imaeda, K., Sugiyama, M., Matsui, M. 10 1900 (has links)
No description available.
3

Growth and Characterization of ZnO Nanostructures

Syed, Abdul Samad January 2011 (has links)
A close relation between structural and optical properties of any semiconductor material does exist. An adequate knowledge and understanding of this relationship is necessary for fabrication of devices with desired optical properties. The structural quality and hence the optical properties can be influenced by the growth method and the substrate used. The aim of this work was to investigate the change in optical properties caused by growth techniques and substrate modification. To study the influence of growth technique on optical properties, ZnO nanostructures were grown using atmospheric pressure metal organic chemical vapor deposition (APMOCVD) and chemical bath deposition (CBD) technique. The structural and optical investigations were performed using scanning electron microscopy (SEM) and micro photoluminescence (μ-PL), respectively. The results revealed that the grown structures were in the shape of nano-rods with slightly different shapes. Optical investigation revealed that low temperature PL spectrum for both the samples was dominated by neutral donor bound excitons emission and it tends to be replaced by free exciton (FX) emission in the temperature range of 60-140K. Both excitonic emissions show a typical red-shift with increase in temperature but with a different temperature dynamics for both the sample and this is due to difference in exciton-phonon interaction because of the different sizes of nano-rods. Defect level emission (DLE) is negligible in both the sample at low temperature but it increased linearly in intensity after 130 K up to the room temperature.Modification in substrate can also play a significant role on structural and optical properties of the material. Specially variation in the miscut angle of substrate can help to control the lateral sizes of the Nanostructures and thus can help to obtain better structural andoptical quality. Also optical quality is a key requirement for making blue and ultraviolet LEDs. Therefore, ZnO Nanostructures were grown on SiC on-axis and off-axis substrates having different off-cut angles. Morphological investigation revealed thatgrown structures are epitaxial for the case when substrate off-cut angle is higher and deposition rate is low. Low temperature PL spectrum of all the samples was dominated by neutral donor bound excitons and free exciton emission become dominant at 100 K for all the samples which completely eliminate the neutral donor bound excitonic emission at 160K. Two electron satellite of the neutral donor bound excitons and LO phonons of excitonic features are also present. A typical red-shift in excitonic features was evident in temperature dependence measurement. Red-shift behavior of free exciton for all the samples was treated by applying Varshni empirical expression and several important parameter, such as, the Debye temperature and the band gap energy value was extracted. Thermal quenching behavior was also observed and treated by thermal quenching expression and value of the activation energy for non-radiative channel was extracted. The results that are obtained demonstrate a significant contribution in the fields of ZnO based nano-optoelectronics and nano-electronics.
4

Investigation on physical properties of epitaxial ferromagnetic film Mn5Ge3 for spintronic applications

Xie, Yufang 18 October 2021 (has links)
The focus of the work is on the epitaxial growth of Mn5Ge3 layers on Ge (001) via ultra-fast solid-state reaction between Mn and Ge using millisecond range FLA at the ambient pressure in continuous N2 flow. Epitaxial Mn5Ge3 layers were obtained both on Ge (001) and Ge (111) substrates by optimizing the fabrication parameters, Mn thickness (30 nm), FLA energy density (100-110 Jcm-2) and FLA duration time. The epitaxial relationship between the alloy film and substrate is the (100) plane of Mn5Ge3 along [001] direction parallel with the [100] direction of Ge (001) plane. It is notable that the hexagonal c axis of Mn5Ge3 on Ge (001) is parallel to the film surface plane, while the reported Mn5Ge3’s c axis on Ge (111) tends to be perpendicular to the film plane. In fact, using ultrafast-SPE the c-axis of Mn5Ge3 is always parallel to the sample surface. Mn5Ge3 films exhibit ferromagnetism which is demonstrated by the anomalous Hall effect up to the TC = 283±5 K. The films exhibit their in-plane magnetic easy axis along the hexagonal c-axis independent of the Mn5Ge3 film thickness. This provides a new avenue for the fabrication of Ge-based spin-injectors fully compatible with industrial CMOS technology. The deeper understanding of the magnetic, structural and electrical properties of (100) epitaxial Mn5Ge3 grown on Ge (001) are presented by utilizing DFT calculation (by our collaborator M. Birowska) and various experimental methods. The Mn atoms in Mn5Ge3 occupy two distinct Wyckoff positions with fourfold (Mn1) and sixfold (Mn2) multiplicity. During cooling down to 100 K the Mn5Ge3 unit-cell shows remarkable structural deformation. The nearest distance d3 between Mn2-Mn2 atoms in the hexagonal a-b plane is shortened much faster than the nearest distance d1 between Mn1-Mn1 atoms along hexagonal c axis. The DFT calculations show that below critical distance d3 < 3.002 Å, the Mn2 atoms are AFM coupled while for d3 > 3.002 Å the coupling is FM. The FM coupling between Mn1 atoms weakly depends on the atomic distance d1. Moreover, there is a transition from collinear to noncollinear spin configuration at about 70±5 K. Simultaneously, at low temperature, the angular dependent magnetoresistance shows a switching from multi-fold component to twofold symmetry. The combination of different experimental techniques with theoretical calculations enabled us to conclude that the switching between non-collinear and collinear spin configurations and the variation of anisotropic magnetoresistance in Mn5Ge3 is due to the strain induced change of the magnetic coupling between Mn2-Mn2 atoms. Finally, the effects of strain on the structural and magnetic properties of epitaxial Mn5Ge3 on Ge (111) substrate by applying ms-range FLA are investigated. The X-ray diffraction results demonstrate that during FLA process the formation of nonmagnetic secondary phases of MnxGey is fully suppressed and the in-plane tensile strain is enhanced. The temperature dependent magnetization indicates that after FLA the Curie temperature of Mn5Ge3 increases from 283±5 K to above 400 K. Further Monte Carlo simulations manifest that the change of the strain in Mn5Ge3 during ms-range FLA modifies the distance between adjacent Mn atoms in the hexagonal basal plane, which provokes the different ferromagnetic interaction between them. Consequently, the significant increase of Curie temperature is observed. This provides a good way to improve the Curie temperature of Mn5Ge3 which is promising to realize room-temperature operated Ge based spin-injectors.
5

Martensitische Phasenumwandlungen und Zwillingsbildung in epitaktisch gewachsenen Nickel-Titan-Schichten

Lünser, Klara 28 February 2023 (has links)
Formgedächtnislegierungen wie Nickel-Titan (NiTi) können sich nach einer plastischen Verformung und anschließendem Aufheizen an ihre ursprüngliche Form „erinnern“ und diese wieder einnehmen. Als meistverwendete Formgedächtnislegierung kann NiTi als Aktor, zur Dämpfung und zur elastokalorischen Kühlen verwendet werden und kommt von der Medizintechnik bis hin zur Luft- und Raumfahrt zum Einsatz. Der Formgedächtniseffekt basiert auf der martensitischen Phasenumwandlung, einer diffusionslosen Strukturänderung, bei der sich die Kristallsymmetrie ändert. Bei NiTi mit etwa 50 At.-% Ni wandelt die kubische Hochtemperaturphase (Austenit) in die monokline Tieftemperaturphase (Martensit) um. Während dieser Umwandlung entsteht eine Vielzahl an Grenzflächen, wodurch sich ein komplexes martensitisches Gefüge – eine Art dreidimensionales „Puzzle“ bildet. Um NiTi-Formgedächtnislegierungen auf verschiedene Anwendungen zuzuschneiden und deren Eigenschaften zu verbessern, ist es wichtig, das Gefüge zu verstehen. Die häufig eingesetzten polykristallinen NiTi-Schichten haben dabei den Nachteil, dass die enthaltenen Korngrenzen einen zusätzlichen Parameter darstellen, der Gefügeuntersuchungen erschwert. Dagegen werden epitaktische Schichten bereits für andere magnetische Formgedächtnislegierungen als Modellsystem eingesetzt und tragen zu einem besseren Verständnis der martensitischen Umwandlung bei. Epitaktische Schichten sind einkristallin, sodass der Einfluss von Korngrenzen ausgeklammert werden kann. Außerdem dient das Substrat, das die Orientierung der Schicht vorgibt, als festes Referenzsystem. In dieser Arbeit wurden epitaktische NiTi-Schichten mit Magnetron-Sputterdeposition hergestellt, die bei Raumtemperatur martensitisch sind. Dabei wurde der Einfluss von Parametern wie Herstellungstemperatur, chemische Zusammensetzung, Wärmebehandlungsszenarien und Pufferschichten auf das Wachstum und die Eigenschaften der Schichten untersucht. So konnten Schichten in zwei unterschiedlichen Orientierungen, (100) und (111), hergestellt werden. Die so optimierten Schichten wurden anschließend dafür genutzt, das martensitische Gefüge skalenübergreifend zu untersuchen. Mit einer Kombination von Mikroskopie- und Röntgenbeugungsmethoden wurden die auftretenden Zwillingsgrenzen, Habitusebenen und Variantenorientierungen analysiert. So lässt sich feststellen, welche Martensitcluster entstehen, wie sie nukleieren und wachsen und welche Grenzflächen auftreten. Dabei ließ sich ein hierarchischer Aufbau des martensitischen Gefüges feststellen, wobei drei Zwillingsgrenzen auf unterschiedlichen Längenskalen für die Beschreibung des Gefüges nötig sind. Die auftretenden Zwillingsgrenzen sind aus Massivmaterialien bekannt, was zeigt, dass sich die Schichten gut als Modellsystem eignen. Das identifizierte, dreidimensionale Modell des Gefüges wurde mit Röntgenmethoden global bestätigt. Dazu wurden die experimentellen Ergebnisse mit zwei unterschiedlichen Martensittheorien, der phänomenologischen Martensittheorie (PTMC) und der Korrespondenztheorie (CT) verglichen. Der hierarchische Aufbau des Gefüges lässt sich zum Großteil mit den Theorien beschreiben. Die Schichten zeigen aber auch die Limitierungen der bisherigen Theorien und bieten so eine Möglichkeit für deren Weiterentwicklung.

Page generated in 0.0613 seconds