• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Early stage sintering and PLAL fragmentation of micro-scale CaCO3

Lin, Peng-Wen 04 July 2012 (has links)
In the first part of this thesis, CaCO3 (calcite) powder ball-milled to micro/nano scale were subjected to isothermal firing in the temperature range of 450-600 ¢XC in an open air furnace in order to study specific-surface area reduction as a result of early-stage sintering/coarsening/coalescence/repacking (denoted as SCCR process) of the fine particles. The surface area and pore size distributions were obtained from the BET and BJH methods, respectively. The H1 type adsorption/desorption hysteresis loop of the type IV isotherm was used as an indicator of cylindrical pore formation upon dry pressing and firing of the powder. The apparent activation energy for the onset SCCR of the dry-pressed calcite powder turned out to be 57.5¡Ó1.0 kJ/mol based on t0.5, i.e. time for 50 % specific surface area reduction. The minimum temperature for such an incipient SCCR process was estimated to be 590K (317¢J) by extrapolating the specific-surface-area reduction rate to null. The mechanism of specific surface area change includes the Brownian motion, coarsening and coalescence/repacking of calcite particles besides sintering via synchronizing diffusion of calcium ion and carbonic acid ion along grain surface and boundary. In the second part of this thesis, pulsed laser ablation on micrometer-sized calcite (type I) powder in liquid H2O (PLAL) was conducted to study the structure and optical property change of calcium carbonate under a dynamic high-temperature. high-pressure aqueous condition. X-ray diffraction (XRD) indicated the fragmented calcite I powder via such a PLAL process change predominantly into a metastable CaCO3 II phase presumably by a displacive type transformation from calcite I and/or nucleated from atom clusters. The refined XRD lattice parameters indicate a significant internal compressive stress (up to 1.5 GPa) was retained for the predominant CaCO3 II nanoparticles having well-developed (013), (010) and (013) faces as revealed by transmission electron microscopy (TEM). Minor calcium carbonate nanoparticles were also identified by TEM to be other high-pressure polymorphs (type III and aragonite), hydrated (monohydrocalcite, ikaite), amorphized (amorphous calcium carbonate), and even decomposed as cubic lime (CaO). Monohydrocalcite occasionally occurred as epitaxial intergrowths within the predominant CaCO3 II matrix. Vibrational spectroscopy (Raman and FTIR) indicated the structure units of the overall nanoparticles by the PLAL process were considerably modified as a combined results of size miniature, protonation and internal compressive stress. The UV-visible absorption results further indicate that the minimum band gap of the colloidal solution was narrowed down to ca. 5 eV and 3 eV for the predominant CaCO3 II and minor accessory phases, respectively, thus shedding light on their potential opto-catalytic applications.
12

A QUANTITATIVE STUDY OF THE RADIANCE DISTRIBUTION AND ITS VARIATION IN OCEAN SURFACE WATERS

Wei, Jianwei 21 February 2013 (has links)
The radiance distribution provides complete information regarding the geometrical structure of the ambient light field within the ocean. A quantitative study of the radiance field in the dynamic ocean water is presented in this thesis work. The study starts with the development of a novel radiance camera for the measurement of the full spherical radiance distribution at the ocean surface and depth. Nonlinear response functions are designed and advanced radiometric calibrations are developed. The resulting camera measures the radiance distribution in absolute units over an extremely high dynamic range at fast rates. With the newly obtained radiance data, I have examined the fine structure of both the downwelling and upwelling radiance distribution and its variation with depth in optically diverse water types. The fully specified radiance distribution data are used to derive all apparent optical properties and some inherent optical properties including the absorption coefficient. With the camera fixed at shallow depths, I have observed and determined the sea surface wave disturbance of the radiance distribution. It is found that the radiance fluctuates anisotropically with regard to its amplitude and periodicity. Typical spatial structures of the dynamic radiance field are identified and shown relevant to the surface waves and the solar zenith angles. The variability in the radiance field also propagates to the irradiance field; the variability is pronounced in measured irradiance depth profiles in the upper layers of the ocean. The statistics of the irradiance fluctuations along the water depth, including the dominant frequency and coefficient of variation, are derived using wavelet techniques and fitted to novel analytic models. The results from the irradiance depth-profile decomposition are in agreement with theoretical models and other independent measurements. This thesis work represents the first attempt to quantify the full light field and its variability in dynamic ocean waters and is of significant relevance to many other optics-related applications.
13

The Effects of Multi-exciton Interactions on Optical Cavity Emission

Qi, XIAODONG 31 July 2012 (has links)
This thesis presents a theoretical study of the collective effects of a large number of photon emitters coupled to optical cavities. The ensemble effects are accounted for by considering both the light emitting and scattering by the photon emitters. It suggests that, to correctly estimate the emitters ensemble coupled cavity mode, it is necessary to consider the existence of the excited excitons ensemble and optical pumps. This thesis shows that optical pumps can excite more excitons and scattering channels as pumping power increases. The change in exciton population can lead to comprehensive spectral behaviors by changing the cavity spectral shapes, bandwidth and resonance positions, through the inhomogeneous broadening and frequencies repulsion effects of collective emissions. The existence of the exciton ensemble can also enhance optical coupling effects between target excitons and the cavity mode. The target exciton, which has a relatively large coupling strength and is close to the cavity peak, can affect the properties of the background dipoles and their coupling to the cavity. All these collective effects are sensitive to the number, the resonances distribution, and the optical properties of the background excitons in the frequency domain and the property of the target exciton, if any. This study provides a perspective on the control of the optical properties of cavities and individual excitons through collective excitation. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2012-07-30 14:51:15.914
14

Mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films

2013 June 1900 (has links)
Biodegradable edible films are both economically and environmentally important to the food industry as packaging and coating materials, as the industry seeks to find a replacement to traditional petroleum-derived synthetic polymers. The overall goal of this thesis was to design a canola protein isolate (CPI)-based biodegradable and edible film that provides excellent mechanical, optical and water vapor barrier properties. A better understanding of the potential of CPI for use as a film-forming ingredient could lead to enhanced utilization and value of the protein for food and non-food applications. In study one, the mechanical, optical and water vapor barrier properties of CPI-based films were investigated as a function of protein (5.0% and 7.5% w/w) and glycerol (30%, 35%, 40%, 45%, and 50% w/w of CPI) concentrations. Overall, as the glycerol concentration increased for the 5.0% and 7.5% CPI-based films, mechanical strength and flexibility decreased and increased, respectively. Film strength was also found to increase at the higher protein concentration; however corresponding changes to film flexibility differed depending on the testing method used. For instance, puncture deformation testing indicated that film flexibility was reduced as the CPI concentration was raised, whereas tensile elongation testing indicated no change in extensibility between the two CPI concentrations. Film transparency was found to increase with increasing levels of glycerol and decreasing levels of CPI, whereas water vapor permeability was found to increase with increasing levels of both glycerol and protein. In study two, mechanical, optical and vapor barrier properties of CPI-based films were evaluated as a function of plasticizer-type (50% (w/w of CPI), glycerol, sorbitol, polyethylene glycol 400 (PEG-400)) and fixative condition (0% and 1% (w/w of CPI), genipin). CPI films prepared with sorbitol were significantly stronger than films with PEG-400, followed by films with glycerol, whereas the flexibility of CPI-based films with glycerol was higher than films with PEG-400, followed by films with sorbitol. In all cases, films prepared with genipin were stronger and less malleable than un-cross linked films. CPI films with glycerol were more transparent than films with sorbitol, followed by films with PEG-400, and the addition of genipin significantly increased the opacity of CPI films. CPI films prepared with glycerol also showed poorer water vapor barrier property than films with PEG-400, followed by films with sorbitol, however, no differences were observed in the presence and absence of genipin. In summary, as the plasticizer concentration increased or protein concentration decreased, CPI films became weaker, more flexible and clearer; however their water vapor barrier properties became poorer as both plasticizer and protein concentration increased. Moreover, CPI films with sorbitol and genipin were found to be stronger, less malleable and permeable to moisture than CPI films with or without genipin, and in the presence of glycerol or PEG-400. Overall, CPI could be considered as a potential material for the development of biodegradable edible packaging in the future.
15

Etude d'empilements multicouches colloidaux préparés par voie sol-gel : propriétés optiques et mécaniques / Study of colloidal multilayer stacks prepared by sol-gel process : optical and mechanical properties

Dieudonné, Xavier 10 November 2011 (has links)
Les procédés de dépôt de couches minces optiques par voie physique ou par voie sol-gel présentent par nature des limitations pour la réalisation de revêtements épais (>1 µm) et ont alors recours à des empilements multicouches pour la préparation de miroirs diélectriques ou de polariseurs. C'est pour ces raisons qu'il est intéressant d'étudier les conditions permettant d'augmenter l'épaisseur critique des films sol-gel notamment. Après avoir étudié la capacité d'empilements des couches colloïdales, trois principaux paramètres ont été identifiés permettant d'augmenter l'épaisseur critique d'empilements monomatériaux et multimatériaux. Ces paramètres sont : l'épaisseur déposée,les interactions chimiques entre les particules et le temps de séchage du film. Ils influencent la microstructure des empilements et par conséquent les propriétés optiques et mécaniques. En contrôlant tous ces paramètres, nous avons montré qu'il est possible de préparer des empilements colloïdaux de fortes épaisseurs ouvrent la voie à la préparation sol-gel de miroirs de hautes performances et/ou de polariseurs. En outre, un développement spécifique de méthodes de caractérisations optiques et mécaniques a été nécessaire pour l'étude de ces films sol-gel, à la fois minces et fragiles. / Main optical deposition processes, physical vapor deposition or sol-gel, exhibit difficulties of achieving thick coatings (>1 µm) and to build multilayer stacks (dielectric mirrors, polarizers). For these reasons, we have studied the conditions to enable a significative increase of deposited sol-gel films thickness. Three main parameters have been evidenced enabling the control of the stacking ability : single layer deposited thickness, chemical interactions beetween nanoparticles and coating drying time. We have shown that these parameters depend on the sol composition and on deposition conditions (process) and that the microstructure of single material stacking is influenced. Optical and mechanical properties of sol-gel films have been studied and optimized regarding these different material and process parameters. For this reason, optical and mechanical characterization techniques have been specifically developed and can now be used for fragile and thin film characterization. In controlling all these parameters, it is now possible to prepare multilayer colloidal stack with high thicknesses enabling the fabrication of high-performance mirrors and polarizers.
16

Deep ultraviolet photoluminescence studies of Al-rich AlGaN and AlN epilayers and nanostructures

Nepal, Neeraj January 1900 (has links)
Doctor of Philosophy / Department of Physics / Hongxing Jiang / Deep ultraviolet (UV) photoluminescence (PL) spectroscopy has been employed to study optical properties of AlGaN alloys, undoped and doped AlN epilayers and nanostructure AlN photonics crystals (PCs). Using a deep UV laser system with an excitation wave length at 197 nm, continuous wave PL, temperature dependent, and time-resolved PL have been carried out on these AlGaN and AlN epilayers and nanostructures. We have measured the compositional and temperature dependence of the energy bandgap of AlxGa1-xN alloys covering the entire alloy range of x, 0 ≤ x ≤ 1 and fitted with the Varshni equation. Varshni coefficients, alpha and beta in AlGaN alloys have a parabolic dependence with alloy concentration x. Based on the experimental data, an empirical relation was thus obtained for the energy gap of AlGaN alloys for the entire alloy concentration and at any temperature below 800 K. The exciton localization energy in AlxGa1-xN alloys the entire composition range (0 ≤ x ≤ 1) has been measured by fitting the band edge emission peak energy with the Varshni equation. Deviations of the excitonic emission peak energy from the Varshni equation at low temperatures provide directly the exciton localization energies, ELoc in AlGaN alloys. It was found that ELoc increases with x for x ≤ 0.7, and decreases with x for x ≥ 0.8. The relations between the exciton localization energy, the activation energy, and the emission linewidth have been established. It thus provides three different and independent methods to determine the exciton localization energies in AlGaN alloys. Impurity transitions in AlGaN alloys have also been investigated. Continuous wave (CW) PL spectra of Si and undoped AlGaN alloys reveals groups of impurity transitions that have been assigned to the recombination between shallow donors and an isolated triply charged cation-vacancy (VIII)3-, a doubly charged cation-vacancy-complex (VIII-complex)2-, and a singly charged cation-vacancy-complex (VIII-complex)-1. The energy levels of these deep acceptors in AlxGa1-xN (0 ≤ x ≤ 1) alloys are pinned to a common energy level in the vacuum. AlGaN alloys predominantly exhibiting the bandedge and (VIII-complex)1- transitions possess improved conductivities over those emitting predominantly (VIII)3- and (VIII-complex)2- related transitions. These results thus answer the very basic question of high resistivity in Al-rich AlGaN alloys. Acceptor doped AlGaN alloys have been studied by deep UV PL. A PL emission line at 6.02 eV has been observed at 10 K in Mg-doped AlN. It is due to the recombination of an exciton bound to the neutral Mg acceptor (I1) with a binding energy, Ebx of 40 meV, which indicates large activation energy of the Mg acceptor. The observed large binding energy of the acceptor-bound exciton is consistent with relatively large binding energy of the Mg acceptor in AlN. With the energy level of 0.51 eV for Mg dopants in AlN, it is interesting and important to study other suitable acceptor dopants for AlN. Growth and optical studies of Zn-doped AlN epilayers has been carried out. The PL spectra of Zn-doped AlN epilayers exhibited two impurity emission lines at 5.40 and 4.50 eV, which were absent in undoped epilayers. They are assigned respectively, to the transitions of free electrons and electrons bound to triply positively charged nitrogen vacancies (0.90 eV deep) to the Zn0 acceptors. It was deduced that the Zn energy level is about 0.74 eV above the valence band edge, which is about 0.23 eV deeper than the Mg energy level in AlN. Nitrogen vacancies are the compensating defects in acceptor doped AlGaN alloys. A nitrogen vacancy (VN) related emission line was also observed in ion-implanted AlN at 5.87 eV and the energy level of singly charged VN1+ is found at 260 meV below the conduction band. As a consequence of large binding energy of VN1+ as well as high formation energy, VN1+ in AlN cannot contribute significant n-type conductivity, which is consistent with experimental observation. The temperature dependent PL study of the bandedge emissions in GaN and AlN epilayers up to 800 K has been carried out, which reveals two distinctive activation processes. The first process occurring below Tt = 325 K (Tt = 500 K) for GaN (AlN) is due to the activation of free excitons to free carriers, whereas the second occurring above Tt with an activation energy of 0.29 eV (0.3 eV) for GaN (AlN) is believed to be associated with a higher lying conduction band (3) at about 0.3 eV above the conduction band minimum (1). These higher lying bands could affect device performance of GaN and AlN at elevated temperatures. Two-dimensional nanostructured AlN photonic crystals (PCs) with a varying periodicity/diameter down to 150 nm/75 nm have also been studied by deep UV PL. With PCs formation, a 20-fold enhancement in the band edge emission intensity at 208 nm over unpatterned AlN epilayer has been observed. The emission intensity increases with the decrease in the lattice constant of the AlN PCs. AlN PCs represent photonic crystals with highest (shortest) bandgap (wavelength) semiconductors, which open up new opportunities for exploring novel physical phenomena in the artificially structured photonic band gap material systems and their applications, particularly in the area of deep UV as well as nano-photonics.
17

Origins and evolution of near-surface microstructures and their influence on the optical property of AA3104 aluminium alloy

Li, Kai January 2013 (has links)
The microstructures of the near-surface layers on AA3104 aluminium alloys and their evolution through rolling and deep drawing processes have been investigated. The effect of the near-surface layers on the optical property of AA3104 aluminium alloy has also been assessed. It was revealed that two types of near-surface deformed layers, both with different microstructures different from the underlying bulk alloy, were generated on the surface of AA3104 aluminium alloy during rolling. Both of them are characterized by ultrafine, equiaxed grains, with diameters <100 nm for type A near-surface deformed layer and <200 nm for type B near-surface deformed layer. A high population density of nano-sized, oxygen-rich particles is present along grain boundaries within type A deformed layer. But type B deformed layer is free of oxygen-rich particles. Type A deformed layer was generated through two mechanisms, i.e. geometric dynamic recrystallization and mechanical alloying. Rolling introduced plastic strain in the surface/near-surface region of aluminium sheet was of sufficient magnitude to cause geometric dynamic recrystallization and thus microstructure refinement. In addition, the incorporation of oxides into the near-surface region was also involved in the formation of type A deformed layer. However, the formation of type B deformed layer was only attributed to severe strain induced geometric dynamic recrystallization. Type A deformed layer was mainly formed at the early stages of hot rolling. The subsequent rolling and deep drawing reduced the thickness of type A deformed layer by distributing it over a larger surface area. During cold rolling, type A deformed layer broke into patches with the extension of alloy surface. Type B deformed layer may be generated on the nascent surface if the strain is sufficiently severe to cause geometric dynamic recrystallization. For the hot rolled alloy sheets, the surface/near-surface region is mainly covered by type A deformed layer. However, for the alloys after cold rolling, only limited area is covered with type A deformed layer. The thicknesses of the near-surface deformed layers are not uniform across the surface of AA3104 aluminium alloy. The maximum thickness of type A deformed layer on transfer slab is approximately 4 µm, while that on re-roll gauge sheet is ~1 µm, and ~0.8 µm on the final gauge sheet, ~400 nm on formed cup and ~100 nm on formed can. Type A deformed layer is randomly distributed as patches on the cold rolled aluminium sheet. The reflectivity of oxygen-rich particles is lower compared with the reflectivity of aluminium. As a result, the type A deformed layer patches absorb more incident light than the area without type A deformed layer. Further, there are plenty of micro-scale mini-cracks present on type A deformed layer, their opening sizes are in the equivalent scale of the wavelength of visible light. The incident light may not able to be reflected out if they go into these mini-cracks. It is more prone to happen for short wavelength light since it is easier for them to go into the mini-cracks than long wavelength light. As a result, less short wavelength visible light is reflected from the type A deformed layer patches. Thus, such patches exhibit a yellow appearance while the surrounding area appears the original silver white aluminium appearance. The aluminium sheet with a high coverage of type A deformed layer exhibits a low total reflectance. Further, its total reflectance is with a significant “red shift”. Neither the macro-scale surface roughness nor the ultrafine grain size affects the total reflectance of aluminium alloys. The total reflectance of aluminium alloys is primarily dependent on the presence of type A deformed layer.
18

Azaphenalene-based π-Conjugated System / アザフェナレンを基盤とするπ共役系の構築

Watanabe, Hiroyuki 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22468号 / 工博第4729号 / 新制||工||1739(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 田中 一生, 教授 秋吉 一成, 教授 古賀 毅 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
19

Development of Functional Materials Based on Polyhedral Oligomeric Silsesquioxane with Flexible Side-Chains / 柔軟性側鎖を有するかご型シルセスキオキサンを基盤とした機能性材料の創出

Narikiyo, Hayato 23 March 2021 (has links)
付記する学位プログラム名: 充実した健康長寿社会を築く総合医療開発リーダー育成プログラム / 京都大学 / 新制・課程博士 / 博士(工学) / 甲第23227号 / 工博第4871号 / 新制||工||1760(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 田中 一生, 教授 秋吉 一成, 教授 古賀 毅 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
20

Fabrications and optical properties of plasmonic arrays without noble metals / 貴金属を用いないプラズモニックアレイの作製と光物性

Kamakura, Ryosuke 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21113号 / 工博第4477号 / 新制||工||1696(附属図書館) / 京都大学大学院工学研究科材料化学専攻 / (主査)教授 田中 勝久, 教授 三浦 清貴, 教授 作花 哲夫 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM

Page generated in 0.0882 seconds