• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diagnostics for the Texas Petawatt laser-plasma accelerator

Du, Dongsu, 1985- 04 January 2011 (has links)
Since 2004, table-top laser-plasma accelerators (LPAs) driven by ˜30fs terwatt laser pulses have produced colimated, nearly mono-energetic eletron bunches with energy up to 1 GeV in laboratories around the world. Large-scale computer simulations show that LPAs can scale to higher energy while retaining high beam quality, but will require laser pulses of higher energy and longer duration than current LPAs. The group of Prof. Mike Downer, in collaboration with the Texas Petawatt (TPW) laser team headed by Prof. Todd Ditmire, is setting up an experiment that uses the TPW laser (1.1 PW, 150 fs) to drive the world’s first multi-GeV LPA. This thesis provides a general overview of the TPW-LPA project, including several diagnostic systems for the beam, plasma and laser pulse. Special attention is given to three of the diagnostic systems: (1)A transverse interferometry diagnostic of the plasma density profile created by the TPW laser pulse; (2)A Thomson scattering diagnostic of the self-guided path of the TPW laser pulse through the plasma; (3)An optical transition radiation diagnostic of the accelerated electron bunch exiting the plasma. In each case, basic principles, theoretical background, calculation and simulation results, and preliminary experimental results will be presented. / text
2

A view screen beam profile monitor for the ARIEL e-linac at TRIUMF

Storey, Douglas Wesley 16 August 2011 (has links)
A megawatt class electron linear accelerator (e-linac) will be constructed at TRIUMF as part of the new ARIEL facility which will produce rare ion beams for the study of nuclear structure and astrophysics, and material science. The 50MeV, 10mA, continuous wave e-linac will drive gamma ray induced fissioning of a Uranium target for the production of neutron rich beam species. View Screens located at a number of places along the e-linac beam-line will acquire two dimensional images of the transverse electron beam profiles, providing measurements of the size, position, and shape of the incident e-linac beam. The design of the View Screens will be presented, based on design studies and simulations performed to evaluate the performance of the View Screens under various operating conditions. These studies include GEANT simulations of the energy loss and scattering of the electron beam as it passes through the scintillation and Optical Transition Radiation beam targets, the subsequent thermal response of the targets, and a ray tracing optics simulation to optimize the configuration of the imaging optics. Bench test have been performed on the resulting optics design to evaluate the imaging characteristics, verifying fulfillment of the design requirements. Construction of a prototype View Screen device is currently underway, with beam tests scheduled for Fall 2011. A total of 14 View Screens will be constructed and installed along the e-linac beam-line. / Graduate

Page generated in 0.5753 seconds