• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 15
  • 13
  • 12
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical diagnostics of laser plasmas

Pedregosa Delserieys, Alice 18 February 2008 (has links) (PDF)
See english abstract
2

Development of Raman and Thomson scattering diagnostics for study of energy transfer in nonequilibrium, molecular plasmas

Lee, Wonchul, January 2003 (has links)
Thesis (Ph. D.)--Ohio State University, 2003. / Title from first page of PDF file. Document formatted into pages; contains xvi, 210 p.; also includes graphics (some col.) Includes bibliographical references (p. 178-184). Available online via OhioLINK's ETD Center
3

Angular Dependence of Nonlinear Thomson Scattering From Electrons in a High Intensity Laser Focus

Schulzke, Christoph Alexander 12 August 2020 (has links)
The theory of nonlinear Thomson scattering is presented. A model for the scattered light is developed. The orthogonal polarizations of the second harmonic of the scattered light are examined. The predictions of the model are compared to measurements by our group in collaboration with the Extreme Light Laboratory at the University of Nebraska-Lincoln (UNL). The veracity of the theory and model are confirmed by comparison to the experimental data.
4

Plasma diagnostic signal analysis : a Bayesian based genetic algorithm approach

Millar, Alexander Paul January 2000 (has links)
No description available.
5

Diagnostika Thomsonovým rozptylem na tokamaku COMPASS / Thomson Scattering Diagnostic on COMPASS Tokamak

Aftanas, Milan January 2015 (has links)
Thorough study of plasma behaviour in magnetically confined fusion devices is of great importance in recent research. Diagnostics capable to reliably provide important parameters of the hot plasma are key tool in the effort to control fusion energy on Earth. Thomson Scattering diagnostic has a credit of being a complex design diagnostic with reliable measurement of electron temperature and density profiles. The main subjects of this thesis are design of the Thomson Scattering system for the COMPASS tokamak, analysis of output data errors and exploitation of the data to study plasma behaviour. Besides this work, the author has been involved in the design of Thomson Scattering systems for the ITER tokamak and this design is presented here as well. Powered by TCPDF (www.tcpdf.org)
6

High-Yield Optical Undulators Scalable to Optical Free-Electron Laser Operation by Traveling-Wave Thomson-Scattering

Steiniger, Klaus 18 April 2018 (has links) (PDF)
All across physics research, incoherent and coherent light sources are extensively utilized. Especially highly brilliant X-ray sources such as third generation synchrotrons or free-electron lasers have become an invaluable tool enabling experimental techniques that are unique to these kinds of light sources. But these sources have developed to large scale facilities and a demand in compact laboratory scale sources providing radiation of similar quality arises nowadays. This thesis focuses on Traveling-Wave Thomson-Scattering (TWTS) which allows for the realization of ultra-compact, inherently synchronized and highly brilliant light sources. The TWTS geometry provides optical undulators, through which electrons pass and thereby emit radiation, with hundreds to thousands of undulator periods by utilizing pulse-front tilted lasers pulses from high peak-power laser systems. TWTS can realize incoherent radiation sources with orders of magnitude higher photon yield than established head-on Thomson sources. Moreover, optical free-electron lasers (OFELs) can be realized with TWTS if state-of-the-art technology in electron accelerators and laser systems is utilized. Tilting the laser pulse front with respect to the wavefront by half of this interaction angle optimizes electron and laser pulse overlap by compensating the spatial offset between electrons and the laser pulse-front at the beginning of the interaction when the electrons are far from the laser pulse axis. The laser pulse-front tilt ensures continuous overlap between electrons and laser pulse while the electrons cross the laser pulse cross-sectional area. Thus the interaction distance can be controlled in TWTS by the laser pulse width rather than laser pulse duration. Utilizing wide, petawatt class laser pulses allows realizing thousands of optical undulator periods. This thesis will show that TWTS OFELs emitting ultraviolet radiation are realizable today with existing technology for electron accelerators and laser systems. The requirements on electron bunch and laser pulse quality of these ultraviolet TWTS OFELs are discussed in detail as well as the corresponding requirements of TWTS OFELs emitting in the soft and hard X-ray range. These requirements are derived from scaling laws which stem from a self-consistent analytic description of the electron bunch and radiation field dynamics in TWTS OFELs presented within this thesis. It is shown that these dynamics in TWTS OFELs are qualitatively equivalent to the electron bunch and radiation field dynamics of standard free-electron lasers which analytically proves the applicability of TWTS for the realization of an optical free-electron laser. Furthermore, experimental setup strategies to generate the pulse-front tilted TWTS laser pulses are presented and designs of experimental setups for the above examples are discussed. The presented setup strategies provide dispersion compensation, required due to angular dispersion of the laser pulse, which is especially relevant when building compact, high-yield hard X-ray TWTS sources in large interaction angle setups. An example of such an enhanced Thomson source by TWTS, which provides orders of magnitude higher spectral photon density than a comparable head-on interaction geometry, is presented, too. / Inkohärente und kohärente Lichtquellen werden in allen Feldern der physikalischen Forschung intensiv eingesetzt. Im Besonderen ermöglichen hoch-brilliante Röntgenquellen, wie Synchrotrone der dritten Generation und Freie-Elektronen Laser, einzigartige Experimentiertechniken wodurch diese zu unverzichtbaren Werkzeugen wurden. Sie sind allerdings auch im Umfang zu Großforschungseinrichtungen herangewachsen. Um den hohen Bedarf an hoch-brillianten Lichtquellen zu decken, besteht daher die Notwendigkeit neuartige und kompakte Quellen zu entwickeln welche auf dem Maßstab eines Labors realisierbar sind. Diese Dissertation widmet sich der Traveling-Wave Thomsonstreuung (TWTS) welche die Realisierung ultra-kompakter, intrinsisch synchronisierbarer und hoch-brillianter Röntgenquellen ermöglicht. TWTS ist eine Methode der Streuung von Laserpulsen an relativistischen Elektronen. Dabei durchquert ein Elektronenpuls mit nahezu Lichtgeschwindigkeit einen Laserpuls. Während der Durchquerung beginnen die Elektronen im Feld des Laserpulses zu oszillieren wobei sie Strahlung emittieren. Die ausgesandte Strahlung besitzt eine deutlich kürzere Wellenlänge als das Laserfeld aufgrund der hohen Elektronengeschwindigkeit und der damit verbundenen großen Dopplerverschiebung. Das besondere an TWTS ist, dass Elektronen- und Laserpropagationsrichtung einen Winkel einschließen sowie pulsfrontverkippte Hochleistungslaserpulse eingesetzt werden. Dadurch können um Größenordnungen längere Interaktionsdistanzen als in herkömmlichen frontalen Thomsonstreuungsanordnungen erreicht werden. TWTS ermöglicht dadurch die Realisierung optischer Freie-Elektronen Laser (OFEL) und inkohärenter Strahlungsquellen mit einer um Größenordnungen erhöhten Photonenausbeute gegenüber Thomsonstreuungsquellen in frontalen Interaktionsanordungen. Werden modernste Elektronenbeschleuniger und Lasersysteme genutzt, dann ist der Betrieb optischer Freie-Elektronen Laser bereits heute mit TWTS möglich. Das wird in der Dissertation am Beispiel eines Vakuumultraviolettstrahlung emittierenden TWTS OFEL gezeigt. Dessen Anforderungen an die Qualität der Elektronen- und Laserpulse werden im Detail in der Arbeit besprochen sowie weitere Beispiele weicher und harter Röntgenstrahlung emittierender TWTS OFEL präsentiert. Diese Anforderungen werden anhand von Skalierungsvorschriften ermittelt welche aus einer selbstkonsistenten, 1.5 dimensionalen Theorie zur Wechselwirkung zwischen Elektronen und Laserfeld in TWTS abgeleitet sind. Sowohl die Theorie zur Wechselwirkung als auch die Ableitung der Skalierungsvorschriften sind Teile dieser Dissertation. Eine wichtige Erkenntnis der Theorie ist die qualitative Äquivalenz von Elektronen- und Strahlungsfeldbewegungsgleichungen in TWTS zu denen herkömmlicher Freie-Elektronen Laser. Das beweist analytisch die Möglichkeit zur Realisierung eines OFEL mit TWTS. Einen weiteren wichtigen Teil dieser Dissertation bildet die Arbeit zur Generierung der Laserpulse mit verkippter Pulsfront. Optische Aufbauten zur Verkippung der Laserpulsfront werden vorgestellt und für einige der präsentierten TWTS OFEL ausführlich dargelegt. Die Aufbauten verkippen nicht nur die Laserpulsfront sondern gewähren gleichzeitig Kontrolle über die Laserpulsdispersionen. Dadurch kann während der gesamten Interaktionen eine ausreichend hohe Qualität des Laserfeldes sichergestellt werden, was für TWTS OFEL und inkohärente TWTS Lichtquellen mit großem Interaktionswinkel unbedingt notwendig ist. Ein Beispiel einer inkohärenten TWTS Lichtquelle wird ebenfalls präsentiert. Diese emittiert Strahlung mit einer um Größenordnungen höheren spektrale Photonendichte als eine herkömmliche Thomsonquelle in einer frontalen Streuanordnung mit vergleichbaren Laser- und Elektronenpulsen.
7

High-Yield Optical Undulators Scalable to Optical Free-Electron Laser Operation by Traveling-Wave Thomson-Scattering

Steiniger, Klaus 15 December 2017 (has links)
All across physics research, incoherent and coherent light sources are extensively utilized. Especially highly brilliant X-ray sources such as third generation synchrotrons or free-electron lasers have become an invaluable tool enabling experimental techniques that are unique to these kinds of light sources. But these sources have developed to large scale facilities and a demand in compact laboratory scale sources providing radiation of similar quality arises nowadays. This thesis focuses on Traveling-Wave Thomson-Scattering (TWTS) which allows for the realization of ultra-compact, inherently synchronized and highly brilliant light sources. The TWTS geometry provides optical undulators, through which electrons pass and thereby emit radiation, with hundreds to thousands of undulator periods by utilizing pulse-front tilted lasers pulses from high peak-power laser systems. TWTS can realize incoherent radiation sources with orders of magnitude higher photon yield than established head-on Thomson sources. Moreover, optical free-electron lasers (OFELs) can be realized with TWTS if state-of-the-art technology in electron accelerators and laser systems is utilized. Tilting the laser pulse front with respect to the wavefront by half of this interaction angle optimizes electron and laser pulse overlap by compensating the spatial offset between electrons and the laser pulse-front at the beginning of the interaction when the electrons are far from the laser pulse axis. The laser pulse-front tilt ensures continuous overlap between electrons and laser pulse while the electrons cross the laser pulse cross-sectional area. Thus the interaction distance can be controlled in TWTS by the laser pulse width rather than laser pulse duration. Utilizing wide, petawatt class laser pulses allows realizing thousands of optical undulator periods. This thesis will show that TWTS OFELs emitting ultraviolet radiation are realizable today with existing technology for electron accelerators and laser systems. The requirements on electron bunch and laser pulse quality of these ultraviolet TWTS OFELs are discussed in detail as well as the corresponding requirements of TWTS OFELs emitting in the soft and hard X-ray range. These requirements are derived from scaling laws which stem from a self-consistent analytic description of the electron bunch and radiation field dynamics in TWTS OFELs presented within this thesis. It is shown that these dynamics in TWTS OFELs are qualitatively equivalent to the electron bunch and radiation field dynamics of standard free-electron lasers which analytically proves the applicability of TWTS for the realization of an optical free-electron laser. Furthermore, experimental setup strategies to generate the pulse-front tilted TWTS laser pulses are presented and designs of experimental setups for the above examples are discussed. The presented setup strategies provide dispersion compensation, required due to angular dispersion of the laser pulse, which is especially relevant when building compact, high-yield hard X-ray TWTS sources in large interaction angle setups. An example of such an enhanced Thomson source by TWTS, which provides orders of magnitude higher spectral photon density than a comparable head-on interaction geometry, is presented, too. / Inkohärente und kohärente Lichtquellen werden in allen Feldern der physikalischen Forschung intensiv eingesetzt. Im Besonderen ermöglichen hoch-brilliante Röntgenquellen, wie Synchrotrone der dritten Generation und Freie-Elektronen Laser, einzigartige Experimentiertechniken wodurch diese zu unverzichtbaren Werkzeugen wurden. Sie sind allerdings auch im Umfang zu Großforschungseinrichtungen herangewachsen. Um den hohen Bedarf an hoch-brillianten Lichtquellen zu decken, besteht daher die Notwendigkeit neuartige und kompakte Quellen zu entwickeln welche auf dem Maßstab eines Labors realisierbar sind. Diese Dissertation widmet sich der Traveling-Wave Thomsonstreuung (TWTS) welche die Realisierung ultra-kompakter, intrinsisch synchronisierbarer und hoch-brillianter Röntgenquellen ermöglicht. TWTS ist eine Methode der Streuung von Laserpulsen an relativistischen Elektronen. Dabei durchquert ein Elektronenpuls mit nahezu Lichtgeschwindigkeit einen Laserpuls. Während der Durchquerung beginnen die Elektronen im Feld des Laserpulses zu oszillieren wobei sie Strahlung emittieren. Die ausgesandte Strahlung besitzt eine deutlich kürzere Wellenlänge als das Laserfeld aufgrund der hohen Elektronengeschwindigkeit und der damit verbundenen großen Dopplerverschiebung. Das besondere an TWTS ist, dass Elektronen- und Laserpropagationsrichtung einen Winkel einschließen sowie pulsfrontverkippte Hochleistungslaserpulse eingesetzt werden. Dadurch können um Größenordnungen längere Interaktionsdistanzen als in herkömmlichen frontalen Thomsonstreuungsanordnungen erreicht werden. TWTS ermöglicht dadurch die Realisierung optischer Freie-Elektronen Laser (OFEL) und inkohärenter Strahlungsquellen mit einer um Größenordnungen erhöhten Photonenausbeute gegenüber Thomsonstreuungsquellen in frontalen Interaktionsanordungen. Werden modernste Elektronenbeschleuniger und Lasersysteme genutzt, dann ist der Betrieb optischer Freie-Elektronen Laser bereits heute mit TWTS möglich. Das wird in der Dissertation am Beispiel eines Vakuumultraviolettstrahlung emittierenden TWTS OFEL gezeigt. Dessen Anforderungen an die Qualität der Elektronen- und Laserpulse werden im Detail in der Arbeit besprochen sowie weitere Beispiele weicher und harter Röntgenstrahlung emittierender TWTS OFEL präsentiert. Diese Anforderungen werden anhand von Skalierungsvorschriften ermittelt welche aus einer selbstkonsistenten, 1.5 dimensionalen Theorie zur Wechselwirkung zwischen Elektronen und Laserfeld in TWTS abgeleitet sind. Sowohl die Theorie zur Wechselwirkung als auch die Ableitung der Skalierungsvorschriften sind Teile dieser Dissertation. Eine wichtige Erkenntnis der Theorie ist die qualitative Äquivalenz von Elektronen- und Strahlungsfeldbewegungsgleichungen in TWTS zu denen herkömmlicher Freie-Elektronen Laser. Das beweist analytisch die Möglichkeit zur Realisierung eines OFEL mit TWTS. Einen weiteren wichtigen Teil dieser Dissertation bildet die Arbeit zur Generierung der Laserpulse mit verkippter Pulsfront. Optische Aufbauten zur Verkippung der Laserpulsfront werden vorgestellt und für einige der präsentierten TWTS OFEL ausführlich dargelegt. Die Aufbauten verkippen nicht nur die Laserpulsfront sondern gewähren gleichzeitig Kontrolle über die Laserpulsdispersionen. Dadurch kann während der gesamten Interaktionen eine ausreichend hohe Qualität des Laserfeldes sichergestellt werden, was für TWTS OFEL und inkohärente TWTS Lichtquellen mit großem Interaktionswinkel unbedingt notwendig ist. Ein Beispiel einer inkohärenten TWTS Lichtquelle wird ebenfalls präsentiert. Diese emittiert Strahlung mit einer um Größenordnungen höheren spektrale Photonendichte als eine herkömmliche Thomsonquelle in einer frontalen Streuanordnung mit vergleichbaren Laser- und Elektronenpulsen.
8

Fast ions in tokamaks and their collective measurement by collective Thomson scattering

Pedersen, Jan Egedal January 1998 (has links)
No description available.
9

Estudo de perfis de pressão no Tokamak TCABR / Investigation of pressure profiles in the TCABR tokamak

Ronchi, Gilson 30 January 2017 (has links)
Resumo O conhecimento dos parâmetros macroscópicos do plasma, tais como a densidade e temperatura, bem como sua evolução e dependência espacial são fundamentais para a compreensão e controle do plasma. Esses parâmetros são essenciais para descrição dos eventos associados a fenômenos de transporte, atividade MHD, estudos de regime de confinamento melhorado (modo H), entre outros. O perfil de temperatura e densidade de íons e elétrons caracteriza um parâmetro extremamente importante em plasmas termonucleares que é o perfil de pressão. Para obter esses perfis foram utilizados os principais diagnósticos disponíveis no tokamak TCABR: espalhamento Thomson, interferometria, reflectometria, ECE e diagnósticos espectroscópicos. O espalhamento Thomson é capaz de determinar o perfil de temperatura e densidade eletrônica durante o disparo; já o diagnóstico ECE é capaz de medir a temperatura eletrônica sob certas condições de descargas. Já os diagnósticos de interferometria e reflectometria medem a densidade eletrônica integrada e a densidade eletrônica local, respectivamente. Por fim, o perfil de temperatura iônica pode ser estimado através do alargamento Doppler das linhas de emissão de impurezas. Tais dados são usados para reconstrução do perfil de pressão, em diferentes tipos de descargas no tokamak, bem como possibilitar a reconstrução do equilíbrio. Não obstante, esses diagnósticos podem fornecer informações como estimativa do Z efetivo do plasma, da velocidade de rotação, e das condições que promovem disrupção no TCABR / The knowledge of the plasma macroscopic parameters such as density and temperature as well as their temporal and spatial evolution are fundamental to the understanding and control of the plasma. These parameters are essential for description of events associated with transport phenomena, magnetohydrodynamics (MHD) activity, improved confinement studies (H mode), among others. The temperature and density profiles of electrons and ions define an extremely important parameter in thermonuclear plasmas that is the pressure profile. To measure these profiles we used all the main diagnostics available in the TCABR tokamak: Thomson scattering, interferometry, reflectometry, ECE and spectroscopic diagnostics. The Thomson scattering is able to determine the local electron temperature and density in the plasma discharge; ECE diagnostic is also able to measure the local electron temperature under certain plasma discharge conditions. And the interferometric and reflectometric diagnostics measure the line-integrated electronic density and the local electronic density, respectively. Finally, the ion temperature profile can be estimated by the Doppler broadening of the impurity line emissions. These data are used to reconstruct the pressure profile in different types of discharges in tokamak, and to enable the MHD equilibrium reconstruction. Nevertheless, these analyzes can provide information to estimate the plasma Z effective, plasma rotation velocity, and the conditions that promote the disruption in the TCABR.
10

Estudo de perfis de pressão no Tokamak TCABR / Investigation of pressure profiles in the TCABR tokamak

Gilson Ronchi 30 January 2017 (has links)
Resumo O conhecimento dos parâmetros macroscópicos do plasma, tais como a densidade e temperatura, bem como sua evolução e dependência espacial são fundamentais para a compreensão e controle do plasma. Esses parâmetros são essenciais para descrição dos eventos associados a fenômenos de transporte, atividade MHD, estudos de regime de confinamento melhorado (modo H), entre outros. O perfil de temperatura e densidade de íons e elétrons caracteriza um parâmetro extremamente importante em plasmas termonucleares que é o perfil de pressão. Para obter esses perfis foram utilizados os principais diagnósticos disponíveis no tokamak TCABR: espalhamento Thomson, interferometria, reflectometria, ECE e diagnósticos espectroscópicos. O espalhamento Thomson é capaz de determinar o perfil de temperatura e densidade eletrônica durante o disparo; já o diagnóstico ECE é capaz de medir a temperatura eletrônica sob certas condições de descargas. Já os diagnósticos de interferometria e reflectometria medem a densidade eletrônica integrada e a densidade eletrônica local, respectivamente. Por fim, o perfil de temperatura iônica pode ser estimado através do alargamento Doppler das linhas de emissão de impurezas. Tais dados são usados para reconstrução do perfil de pressão, em diferentes tipos de descargas no tokamak, bem como possibilitar a reconstrução do equilíbrio. Não obstante, esses diagnósticos podem fornecer informações como estimativa do Z efetivo do plasma, da velocidade de rotação, e das condições que promovem disrupção no TCABR / The knowledge of the plasma macroscopic parameters such as density and temperature as well as their temporal and spatial evolution are fundamental to the understanding and control of the plasma. These parameters are essential for description of events associated with transport phenomena, magnetohydrodynamics (MHD) activity, improved confinement studies (H mode), among others. The temperature and density profiles of electrons and ions define an extremely important parameter in thermonuclear plasmas that is the pressure profile. To measure these profiles we used all the main diagnostics available in the TCABR tokamak: Thomson scattering, interferometry, reflectometry, ECE and spectroscopic diagnostics. The Thomson scattering is able to determine the local electron temperature and density in the plasma discharge; ECE diagnostic is also able to measure the local electron temperature under certain plasma discharge conditions. And the interferometric and reflectometric diagnostics measure the line-integrated electronic density and the local electronic density, respectively. Finally, the ion temperature profile can be estimated by the Doppler broadening of the impurity line emissions. These data are used to reconstruct the pressure profile in different types of discharges in tokamak, and to enable the MHD equilibrium reconstruction. Nevertheless, these analyzes can provide information to estimate the plasma Z effective, plasma rotation velocity, and the conditions that promote the disruption in the TCABR.

Page generated in 0.107 seconds