• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 15
  • 13
  • 12
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Diagnostics for the Texas Petawatt laser-plasma accelerator

Du, Dongsu, 1985- 04 January 2011 (has links)
Since 2004, table-top laser-plasma accelerators (LPAs) driven by ˜30fs terwatt laser pulses have produced colimated, nearly mono-energetic eletron bunches with energy up to 1 GeV in laboratories around the world. Large-scale computer simulations show that LPAs can scale to higher energy while retaining high beam quality, but will require laser pulses of higher energy and longer duration than current LPAs. The group of Prof. Mike Downer, in collaboration with the Texas Petawatt (TPW) laser team headed by Prof. Todd Ditmire, is setting up an experiment that uses the TPW laser (1.1 PW, 150 fs) to drive the world’s first multi-GeV LPA. This thesis provides a general overview of the TPW-LPA project, including several diagnostic systems for the beam, plasma and laser pulse. Special attention is given to three of the diagnostic systems: (1)A transverse interferometry diagnostic of the plasma density profile created by the TPW laser pulse; (2)A Thomson scattering diagnostic of the self-guided path of the TPW laser pulse through the plasma; (3)An optical transition radiation diagnostic of the accelerated electron bunch exiting the plasma. In each case, basic principles, theoretical background, calculation and simulation results, and preliminary experimental results will be presented. / text
12

Polarization of Nonlinear Thomson Scattering from a High Intensity Laser Focus

Pratt, Brittni Tasha 12 August 2020 (has links)
Thomson scattering from free electrons in a high-intensity laser focus has been widely studied analytically, but not many measurements of this scattering have been made. We measure polarization-resolved nonlinear Thomson scattering from electrons in a high-intensity laser focus using a parabolic mirror. The weak scattering signal is distinguished from background noise using single-photon detectors and nanosecond time-resolution to distinguish a prompt scattering signal from noise photons. The azimuthal and longitudinal components of the fundamental, second, and third harmonics were measured. Our measurements reasonably match theoretical results, but also show some asymmetry in the emission patterns.
13

Study of magnetic field configuration effects on internal transport barrier formation in Heliotron J / ヘリオトロンJにおける電子内部輸送障壁の形成機構に与える磁場構造の影響に関する研究

Kenmochi, Naoki 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(エネルギー科学) / 甲第19826号 / エネ博第332号 / 新制||エネ||66(附属図書館) / 32862 / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 水内 亨, 教授 長﨑 百伸, 准教授 南 貴司 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
14

Evolution of Electron Properties After Nanosecond Repetitively Pulsed Discharges in Air Measured by Thomson Scattering

Murray, Chase S. 28 August 2020 (has links)
No description available.
15

Measuring Nonlinear Thomson Scattering at Arbitrary Emission Angles

Romero Carranza, Mahonri 09 August 2022 (has links)
We use photon-counting to measure nonlinear Thomson scattering from low-density electrons in an intense laser focus. The azimuthal and longitudinal polarization components of the second harmonic are measured across much of the full emission sphere. The data show, for the first time experimentally, emission structure in the ‘Northern’ and ‘Southern’ hemispheres, where the ‘North Pole’ aligns with the direction of laser propagation. To obtain these measurements, we installed an additional power amplifier on our Ti:sapphire laser system at BYU. The upgrade delivers ten times more energy to the laser focus than we had previously. This increase comes partly from the additional amplifier and partly from increased grating efficiency in our pulse compressor. We achieve an on-target pulse energy of 200 mJ at 35 fs. The focal spot size has radius w0 = 4 μm. This corresponds to an available peak intensity of over 1019 W/cm2, an order of magnitude above the onset of strong relativistic effects. The interaction region in the laser focus has a length of approximately 100 μm. Photons scattered from this region are collected using a 5-cm-focal-length lens and then focused onto the end of a 100-μm-diameter fiber by a second identical lens. The imaging system requires precise alignment with the laser focus, which must be maintained when rotating the photon-collection system along the longitudinal direction of the emission sphere. We developed an alignment procedure that ensures that the detector rotation axis aligns with region of space that is imaged onto the fiber. This region is then aligned to the laser focal spot.
16

Development Of Laser Spectroscopy For Elemental And Molecular Analysis

Liu, Yuan 01 January 2013 (has links)
Laser-Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy are still growing analytical and sensing spectroscopic techniques. They significantly reduce the time and labor cost in analysis with simplified instrumentation, and lead to minimal or no sample damage. In this dissertation, fundamental studies to improve LIBS analytical performance were performed and its fusion with Raman into one single sensor was explored. On the fundamental side, Thomson scattering was reported for the first time to simultaneously measure the electron density and temperature of laser plasmas from a solid aluminum target at atmospheric pressure. Comparison between electron and excitation temperatures brought insights into the verification of local thermodynamic equilibrium condition in laser plasmas. To enhance LIBS emission, Microwave-Assisted LIBS (MA-LIBS) was developed and characterized. In MA-LIBS, a microwave field extends the emission lifetime of the plasma and stronger time integrated signal is obtained. Experimental results showed sensitivity improvement (more than 20-fold) and extension of the analytical range (down to a few tens of ppm) for the detection of copper traces in soil samples. Finally, laser spectroscopy systems that can perform both LIBS and Raman analysis were developed. Such systems provide two types of complimentary information – elemental composition from LIBS and structural information from Raman. Two novel approaches were reported for the first time for LIBS-Raman sensor fusion: (i) an Ultra-Violet system which combines Resonant Raman signal enhancement and high ablation efficiency from UV radiation, and (ii) a Ti:Sapphire laser based NIR system which reduces the fluorescence interference in Raman and takes advantage of femtosecond ablation for LIBS.
17

High-Yield Optical Undulators Scalable to Optical Free-Electron Laser Operation by Traveling-Wave Thomson-Scattering

Steiniger, Klaus 18 April 2018 (has links) (PDF)
All across physics research, incoherent and coherent light sources are extensively utilized. Especially highly brilliant X-ray sources such as third generation synchrotrons or free-electron lasers have become an invaluable tool enabling experimental techniques that are unique to these kinds of light sources. But these sources have developed to large scale facilities and a demand in compact laboratory scale sources providing radiation of similar quality arises nowadays. This thesis focuses on Traveling-Wave Thomson-Scattering (TWTS) which allows for the realization of ultra-compact, inherently synchronized and highly brilliant light sources. The TWTS geometry provides optical undulators, through which electrons pass and thereby emit radiation, with hundreds to thousands of undulator periods by utilizing pulse-front tilted lasers pulses from high peak-power laser systems. TWTS can realize incoherent radiation sources with orders of magnitude higher photon yield than established head-on Thomson sources. Moreover, optical free-electron lasers (OFELs) can be realized with TWTS if state-of-the-art technology in electron accelerators and laser systems is utilized. Tilting the laser pulse front with respect to the wavefront by half of this interaction angle optimizes electron and laser pulse overlap by compensating the spatial offset between electrons and the laser pulse-front at the beginning of the interaction when the electrons are far from the laser pulse axis. The laser pulse-front tilt ensures continuous overlap between electrons and laser pulse while the electrons cross the laser pulse cross-sectional area. Thus the interaction distance can be controlled in TWTS by the laser pulse width rather than laser pulse duration. Utilizing wide, petawatt class laser pulses allows realizing thousands of optical undulator periods. This thesis will show that TWTS OFELs emitting ultraviolet radiation are realizable today with existing technology for electron accelerators and laser systems. The requirements on electron bunch and laser pulse quality of these ultraviolet TWTS OFELs are discussed in detail as well as the corresponding requirements of TWTS OFELs emitting in the soft and hard X-ray range. These requirements are derived from scaling laws which stem from a self-consistent analytic description of the electron bunch and radiation field dynamics in TWTS OFELs presented within this thesis. It is shown that these dynamics in TWTS OFELs are qualitatively equivalent to the electron bunch and radiation field dynamics of standard free-electron lasers which analytically proves the applicability of TWTS for the realization of an optical free-electron laser. Furthermore, experimental setup strategies to generate the pulse-front tilted TWTS laser pulses are presented and designs of experimental setups for the above examples are discussed. The presented setup strategies provide dispersion compensation, required due to angular dispersion of the laser pulse, which is especially relevant when building compact, high-yield hard X-ray TWTS sources in large interaction angle setups. An example of such an enhanced Thomson source by TWTS, which provides orders of magnitude higher spectral photon density than a comparable head-on interaction geometry, is presented, too
18

High-Yield Optical Undulators Scalable to Optical Free-Electron Laser Operation by Traveling-Wave Thomson-Scattering

Steiniger, Klaus 18 April 2018 (has links)
All across physics research, incoherent and coherent light sources are extensively utilized. Especially highly brilliant X-ray sources such as third generation synchrotrons or free-electron lasers have become an invaluable tool enabling experimental techniques that are unique to these kinds of light sources. But these sources have developed to large scale facilities and a demand in compact laboratory scale sources providing radiation of similar quality arises nowadays. This thesis focuses on Traveling-Wave Thomson-Scattering (TWTS) which allows for the realization of ultra-compact, inherently synchronized and highly brilliant light sources. The TWTS geometry provides optical undulators, through which electrons pass and thereby emit radiation, with hundreds to thousands of undulator periods by utilizing pulse-front tilted lasers pulses from high peak-power laser systems. TWTS can realize incoherent radiation sources with orders of magnitude higher photon yield than established head-on Thomson sources. Moreover, optical free-electron lasers (OFELs) can be realized with TWTS if state-of-the-art technology in electron accelerators and laser systems is utilized. Tilting the laser pulse front with respect to the wavefront by half of this interaction angle optimizes electron and laser pulse overlap by compensating the spatial offset between electrons and the laser pulse-front at the beginning of the interaction when the electrons are far from the laser pulse axis. The laser pulse-front tilt ensures continuous overlap between electrons and laser pulse while the electrons cross the laser pulse cross-sectional area. Thus the interaction distance can be controlled in TWTS by the laser pulse width rather than laser pulse duration. Utilizing wide, petawatt class laser pulses allows realizing thousands of optical undulator periods. This thesis will show that TWTS OFELs emitting ultraviolet radiation are realizable today with existing technology for electron accelerators and laser systems. The requirements on electron bunch and laser pulse quality of these ultraviolet TWTS OFELs are discussed in detail as well as the corresponding requirements of TWTS OFELs emitting in the soft and hard X-ray range. These requirements are derived from scaling laws which stem from a self-consistent analytic description of the electron bunch and radiation field dynamics in TWTS OFELs presented within this thesis. It is shown that these dynamics in TWTS OFELs are qualitatively equivalent to the electron bunch and radiation field dynamics of standard free-electron lasers which analytically proves the applicability of TWTS for the realization of an optical free-electron laser. Furthermore, experimental setup strategies to generate the pulse-front tilted TWTS laser pulses are presented and designs of experimental setups for the above examples are discussed. The presented setup strategies provide dispersion compensation, required due to angular dispersion of the laser pulse, which is especially relevant when building compact, high-yield hard X-ray TWTS sources in large interaction angle setups. An example of such an enhanced Thomson source by TWTS, which provides orders of magnitude higher spectral photon density than a comparable head-on interaction geometry, is presented, too
19

Development of Raman and Thomson scattering diagnostics for study of energy transfer in nonequilibrium, molecular plasmas

Lee, Wonchul 07 August 2003 (has links)
No description available.
20

A High-Energy, Ultrashort-Pulse X-Ray System for the Dynamic Study of Heavy, Dense Materials

Gibson, D J January 2004 (has links)
Thesis (Ph.D.); Submitted to Univ. of California, Davis, CA (US); 17 Sep 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "UCRL-TH-207378" Gibson, D J. 09/17/2004. Report is also available in paper and microfiche from NTIS.

Page generated in 0.1346 seconds