• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 10
  • 9
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

IMAGE PARAMETERS FOR FAST EVALUATION OF ADAPTIVE OPTICAL SYSTEMS

Bareket, Noah January 1979 (has links)
No description available.
12

Applications of linear predictors in adaptive optics

Page, Kelly A. January 2005 (has links)
Thesis (Ph. D.)--University of Wyoming, 2005. / Title from PDF title page (viewed on Nov. 5, 2007). Includes bibliographical references (p. 166-170).
13

Wave-front sensing for adaptive optics in astronomy : a thesis presented for the degree of Doctor of Philosophy, University of Canterbury /

Van Dam, Marcos Alejandro. January 1900 (has links)
Thesis (Ph. D.)--University of Canterbury, 2002. / Typescript (photocopy). "March 2002." Includes bibliographical references (p. 191-197). Also available via the World Wide Web.
14

Wavefront sensors in adaptive optics : a thesis presented for the degree of Doctor of Philosophy, University of Canterbury, Christchurch, New Zealand /

Chew, Theam Yong. January 1900 (has links)
Thesis (Ph. D.)--University of Canterbury, 2008. / Typescript (photocopy). "February 2008." Includes bibliographical references (p. 191-199). Also available via the World Wide Web.
15

The effect of spatial attention on pupil dynamics

Unknown Date (has links)
Although it is well known that the pupil responds dynamically to changes in ambient light levels, the results from this dissertation show for the first time that the pupil also responds dynamically to changes in spatially distributed attention. Using a variety of orientating tasks, subjects alternated between focusing attention on a central stimulus and spreading attention over a larger area. Fourier analysis of the fluctuating pupil diameter indicated that: 1) pupil diameter changed at the rate of attention variation, dilating with broadly spread attention and contracting with narrowly focused attention, and 2) pupillary differences required changes in attentional spread; there were no differences in pupil diameter between sustained broad and sustained spread attention. Given that broadly spread attention increases the relative activation of large receptive fields and narrowly focused attention increases the relative activation of small receptive fields (Balz & Hock, 1997), the results of this study indicate that these attentional effects on receptive field activation can be mediated by changes in pupil diameter. That is, under broad attention, the corresponding pupillary dilation observed would increase spherical aberration, blurring the image thereby reducing high spatial frequency information and decreasing the activation of relatively small cortical receptive fields compared to relatively large receptive fields. This increased perception of low spatial frequencies would be beneficial in cases where attention is spread over a large area. Alternatively, under narrow attention the resulting pupillary constriction reduces spherical aberration sharpening the image and preserving high spatial frequency information resulting in a relatively increased response of small receptive fields. / by Lori B. Daniels. / Thesis (Ph.D.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
16

Combined integral and robust control of the segmented mirror telescope

Looysen, Michael W. January 2009 (has links) (PDF)
Thesis (M.S. in Astronautical Engineering)--Naval Postgraduate School, December 2009. / Thesis Advisor(s): Agrawal, Brij; Kim, Jae Jun. "December 2009." Description based on title screen as viewed on January 27, 2010. Author(s) subject terms: MIMO control, Robust control, adaptive optics, segmented mirrors, flexible structures, space telescopes, Shack-Hartmann sensors, hybrid controller. Includes bibliographical references (p. 77). Also available in print.
17

Observations of starburst galaxies science and supporting technology /

Laag, Edward Aric. January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 16, 2010). Includes bibliographical references. Also issued in print.
18

Atmospheric turbulence characterisation using scintillation detection and ranging : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Astronomy at the University of Canterbury /

Mohr, Judy L. January 1900 (has links)
Thesis (Ph. D.)--University of Canterbury, 2009. / Typescript (photocopy). "November 24, 2009." Includes bibliographical references (p. 325-330). Also available via the World Wide Web.
19

Techniques in high resolution observations from the ground and space, and imaging of the merging environments of radio galaxies at redshift 1 to 4

Steinbring, Eric 03 August 2018 (has links)
High resolution imaging and spectroscopy are invaluable tools for extragalactic astronomy. Galaxies with redshifts of 1 or more subtend a very small angle on the sky—typically, only about an arcsecond. Unfortunately, this is also approximately the angular resolution achieved with a ground-based telescope regardless of its aperture. Atmospheric turbulence ruins the image before it reaches the telescope but the emerging technology of adaptive optics (AO) gives the observer the possibility, within limitations, of correcting for these effects. This is the case for instruments such as the Canada-France-Hawaii Telescope (CFHT) Adaptive Optics Bonnette (AOB) and the Gemini North Telescope (Gemini) Altitude-Conjugate Adaptive Optics for the Infrared (Altair) systems. The alternative is to rise above the limitations of the atmosphere entirely and put the telescope in space, for example, the Hubble Space Telescope (HST) and its successor, the Next-Generation Space Telescope (NGST). I discuss several techniques that help overcome the limitations of AO observations with existing instruments in order to make them more comparable to imaging from space. For example, effective dithering and flat-fielding techniques as well as methods to determine the effect of the instrument on the image of, say, a galaxy. The implementation of these techniques as a software package called AOTOOLS is discussed. I also discuss computer simulations of AO systems, notably the Gemini Altair instrument, in order to understand and improve them. I apply my AO image processing techniques to observations of high-redshift radio galaxies (HzRGS) with the CFHT AOB and report on deep imaging in near-infrared (NIR) bands of 6 HzRGs in the redshift range 1.1 ≤ z ≤ 3.8. The NIR is probing the restframe visible light—mature stellar populations—at these redshifts. The radio galaxy is resolved in all of these observations and its ‘clumpier’ appearance at higher redshift leads to the main result—although the sample is very small—that these galaxy environments are undergoing mergers at high redshift. Finally, I look to the future of high resolution observations and discuss simulations of imaging and spectroscopy with the NGST. The computer software NGST VI/MOS is a ‘virtual reality’ simulator of the NGST observatory providing the user with the opportunity to test real observing campaigns. / Graduate
20

Improving In Vivo Two Photon Microscopy Without Adaptive Optics

Unknown Date (has links)
Two photon microscopy is one of the fastest growing methods of in-vivo imaging of the brain. It has the capability of imaging structures on the scale of 1μm. At this scale the wavelength of the imaging field (usually near infra-red), is comparable to the size of the structures being imaged, which makes the use of ray optics invalid. A better understanding is needed to predict the result of introducing different media into the light path. We use Wolf's integral, which is capable of fulfilling these needs without the shortcomings of ray optics. We predict the effects of aberrating media introduced into the light path like glass cover-slips and then correct the aberration using the same method. We also create a method to predict aberrations when the interfaces of the media in the light-path are not aligned with the propagation direction of the wavefront. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0659 seconds