Spelling suggestions: "subject:"0ptimal power low (OPF)"" "subject:"0ptimal power flow (OPF)""
1 |
Advanced voltage control for energy conservation in distribution networksGutierrez Lagos, Luis Daniel January 2018 (has links)
The increasing awareness on the effect of carbon emissions in our planet has led to several countries to adopt targets for their reduction. One way of contributing to this aim is to use and distribute electricity more efficiently. In this context, Conservation Voltage Reduction (CVR), a well-known technique that takes advantage of the positive correlation between voltage and demand to reduce energy consumption, is gaining renewed interest. This technique saves energy by only reducing customer voltages, without relying on customer actions and, therefore, can be controlled by the Distribution Network Operator (DNO). CVR not only brings benefits to the electricity system by reducing generation requirements (fewer fossil fuel burning and carbon emissions), but also to customers, as energy bill reductions. The extent to which CVR can bring benefits mainly depends on the customers load composition and their voltages. While the former dictates the voltage-demand correlation, the latter constraints the voltage reduction that can be applied without violating statutory limits. Although CVR has been studied for many years, most of the studies neglect the time-varying voltage-demand characteristic of loads and/or do not assess end customer voltages. While these simplifications could be used to estimate CVR benefits for fixed and limited voltage reductions, realistic load and network models are needed to assess the performance of active CVR schemes, where voltages are actively managed to be close to the minimum limit. Moreover, distribution networks have been traditionally designed with limited monitoring and controllability. Therefore, CVR has been typically implemented by adopting conservative voltage reductions from primary substations, for both American and European-style networks. However, as new infrastructure is deployed in European-style LV networks (focus of this work), such as monitoring and on-load tap changers (OLTCs), the opportunity arises to actively manage voltages closer to end customer (unlocking further energy savings). Although these technologies have shown to effectively control voltages in LV networks, their potential for CVR has not been assessed before. Additionally, most CVR studies were performed in a context where distributed generation (DG) was not common. However, this has changed in many countries, with residential photovoltaic (PV) systems becoming popular. As this is likely to continue, the interactions of residential PV and CVR need to be studied. This thesis contributes to address the aforementioned literature gaps by: (i) proposing a simulation framework to characterise the time-varying voltage-demand correlation of individual end customers; (ii) developing a process to model real distribution networks (MV and LV) from DNO data; (iii) adopting a Monte Carlo-based quantification process to cater for the uncertainties related to individual customer demand; (iv) assessing the CVR benefits that can be unlocked with new LV infrastructure and different PV conditions. To accomplish (iv), first, a simple yet effective rule-based scheme is proposed to actively control voltages in OLTC-enabled LV networks without PV and using limited monitoring. It is demonstrated that by controlling voltages closer to customers, annual energy savings can increase significantly, compared to primary substation voltage reductions. Also, to understand the effect of PV on CVR, a centralized, three-phase AC OPF-based CVR scheme is proposed. This control, using monitoring, OLTCs and capacitors across MV and LV networks, actively manages voltages to minimize energy consumption in high PV penetration scenarios whilst considering MV-LV constraints. Results demonstrate that without CVR, PV systems lead to higher energy imports for customers without PV, due to higher voltages. Conversely, the OPF-based CVR scheme can effectively manage voltages throughout the day, minimising energy imports for all customers. Moreover, if OLTCs at secondary substations are available (and managed in coordination with the primary substation OLTC), these tend to regulate customer voltages close to the minimum statutory limit (lower tap positions), while the primary OLTC delivers higher voltages to the MV network to also reduce MV energy losses.
|
2 |
Incorporating voltage security into the planning, operation and monitoring of restructured electric energy marketsNair, Nirmal-Kumar 12 April 2006 (has links)
As open access market principles are applied to power systems, significant changes
are happening in their planning, operation and control. In the emerging marketplace,
systems are operating under higher loading conditions as markets focus greater attention
to operating costs than stability and security margins. Since operating stability is a basic
requirement for any power system, there is need for newer tools to ensure stability and
security margins being strictly enforced in the competitive marketplace. This dissertation
investigates issues associated with incorporating voltage security into the unbundled
operating environment of electricity markets. It includes addressing voltage security in
the monitoring, operational and planning horizons of restructured power system.
This dissertation presents a new decomposition procedure to estimate voltage
security usage by transactions. The procedure follows physical law and uses an index
that can be monitored knowing the state of the system. The expression derived is based
on composite market coordination models that have both PoolCo and OpCo transactions,
in a shared stressed transmission grid. Our procedure is able to equitably distinguish the
impacts of individual transactions on voltage stability, at load buses, in a simple and fast
manner.
This dissertation formulates a new voltage stability constrained optimal power flow
(VSCOPF) using a simple voltage security index. In modern planning, composite power
system reliability analysis that encompasses both adequacy and security issues is being
developed. We have illustrated the applicability of our VSCOPF into composite
reliability analysis.
This dissertation also delves into the various applications of voltage security index.
Increasingly, FACT devices are being used in restructured markets to mitigate a variety
of operational problems. Their control effects on voltage security would be
demonstrated using our VSCOPF procedure. Further, this dissertation investigates the
application of steady state voltage stability index to detect potential dynamic voltage
collapse.
Finally, this dissertation examines developments in representation, standardization,
communication and exchange of power system data. Power system data is the key input
to all analytical engines for system operation, monitoring and control. Data exchange
and dissemination could impact voltage security evaluation and therefore needs to be
critically examined.
|
3 |
On the Dynamics and Statics of Power System Operation : Optimal Utilization of FACTS Devicesand Management of Wind Power UncertaintyNasri, Amin January 2014 (has links)
Nowadays, power systems are dealing with some new challenges raisedby the major changes that have been taken place since 80’s, e.g., deregu-lation in electricity markets, significant increase of electricity demands andmore recently large-scale integration of renewable energy resources such aswind power. Therefore, system operators must make some adjustments toaccommodate these changes into the future of power systems.One of the main challenges is maintaining the system stability since theextra stress caused by the above changes reduces the stability margin, andmay lead to rise of many undesirable phenomena. The other important chal-lenge is to cope with uncertainty and variability of renewable energy sourceswhich make power systems to become more stochastic in nature, and lesscontrollable.Flexible AC Transmission Systems (FACTS) have emerged as a solutionto help power systems with these new challenges. This thesis aims to ap-propriately utilize such devices in order to increase the transmission capacityand flexibility, improve the dynamic behavior of power systems and integratemore renewable energy into the system. To this end, the most appropriatelocations and settings of these controllable devices need to be determined.This thesis mainly looks at (i) rotor angle stability, i.e., small signal andtransient stability (ii) system operation under wind uncertainty. In the firstpart of this thesis, trajectory sensitivity analysis is used to determine themost suitable placement of FACTS devices for improving rotor angle sta-bility, while in the second part, optimal settings of such devices are foundto maximize the level of wind power integration. As a general conclusion,it was demonstrated that FACTS devices, installed in proper locations andtuned appropriately, are effective means to enhance the system stability andto handle wind uncertainty.The last objective of this thesis work is to propose an efficient solutionapproach based on Benders’ decomposition to solve a network-constrained acunit commitment problem in a wind-integrated power system. The numericalresults show validity, accuracy and efficiency of the proposed approach. / <p>The Doctoral Degrees issued upon completion of the programme are issued by Comillas Pontifical University, Delft University of Technology and KTH Royal Institute of Technology. The invested degrees are official in Spain, the Netherlands and Sweden, respectively.QC 20141028</p>
|
4 |
Hybridization of particle Swarm Optimization with Bat Algorithm for optimal reactive power dispatchAgbugba, Emmanuel Emenike 06 1900 (has links)
This research presents a Hybrid Particle Swarm Optimization with Bat Algorithm (HPSOBA) based
approach to solve Optimal Reactive Power Dispatch (ORPD) problem. The primary objective of
this project is minimization of the active power transmission losses by optimally setting the control
variables within their limits and at the same time making sure that the equality and inequality
constraints are not violated. Particle Swarm Optimization (PSO) and Bat Algorithm (BA)
algorithms which are nature-inspired algorithms have become potential options to solving very
difficult optimization problems like ORPD. Although PSO requires high computational time, it
converges quickly; while BA requires less computational time and has the ability of switching
automatically from exploration to exploitation when the optimality is imminent. This research
integrated the respective advantages of PSO and BA algorithms to form a hybrid tool denoted as
HPSOBA algorithm. HPSOBA combines the fast convergence ability of PSO with the less
computation time ability of BA algorithm to get a better optimal solution by incorporating the BA’s
frequency into the PSO velocity equation in order to control the pace. The HPSOBA, PSO and BA algorithms were implemented using MATLAB programming language and tested on three (3)
benchmark test functions (Griewank, Rastrigin and Schwefel) and on IEEE 30- and 118-bus test
systems to solve for ORPD without DG unit. A modified IEEE 30-bus test system was further used
to validate the proposed hybrid algorithm to solve for optimal placement of DG unit for active
power transmission line loss minimization. By comparison, HPSOBA algorithm results proved to
be superior to those of the PSO and BA methods.
In order to check if there will be a further improvement on the performance of the HPSOBA, the
HPSOBA was further modified by embedding three new modifications to form a modified Hybrid
approach denoted as MHPSOBA. This MHPSOBA was validated using IEEE 30-bus test system to
solve ORPD problem and the results show that the HPSOBA algorithm outperforms the modified
version (MHPSOBA). / Electrical and Mining Engineering / M. Tech. (Electrical Engineering)
|
Page generated in 0.0738 seconds