• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stabilité et perturbations optimales globales d'écoulements compressibles pariétaux / Stability and global optimal perturbations of parietal compressible flows

Bugeat, Benjamin 12 December 2017 (has links)
Une méthode de calcul de forçage optimal a été employée afin d'analyser le caractère amplificateur sélectif de bruit d'écoulements compressibles pariétaux. Une telle approche inclut la prise en compte de croissances non-modales induites par la non-normalité des équations de Navier-Stokes linéarisées. La méthode numérique repose sur le calcul de la matrice résolvante globale et la résolution d'un problème aux valeurs propres associé à un problème d'optimisation. Les densités d'énergie des forçages et réponses optimaux calculés pour une couche limite supersonique ont pu être reliés à la courbe neutre expérimentale obtenue par Laufer et Vrebalovich, à condition de contraindre la localisation du forçage en amont de la branche inférieure. Par la suite, une étude paramétrique en nombre de Mach de la réceptivité 2D d'une interaction choc/couche limite laminaire a permis de caractériser le développement d'instabilités convectives de Kelvin-Helmholtz et Tollmien-Schlichting (TS) à haute fréquence. La réceptivité basse fréquence de ce système a été mise en relation avec la résonance d'un mode global stable. Par ailleurs, une extension de la méthode numérique 2D a été proposée pour le calcul de perturbations 3D. Son application au calcul du forçage optimal d'une couche limite à M=4.5 a permis de mettre en évidence la croissance non-modale 3D de streaks ainsi que le développement d'ondes TS obliques dont la croissance, en régime compressible, est favorisée par rapport à celle des ondes 2D. Cette étude a également permis d'observer la croissance du mode de Mack à plus haute fréquence. / Parietal compressible flows have been studied by means of optimal forcing computations in order to characterize the noise amplifier nature of these flows. This approach is able to take into account the non-modal growth of linear perturbations induced by the non-normality of the linearized Navier-Stokes equations. The numerical strategy is based on the computation of the global resolvent matrix and an eigenvalue problem stemming from an optimization problem. Optimal forcing and response energy densities of a supersonic boundary layer have been linked to the experimental neutral curve obtained by Laufer et Vrebalovich, provided that the forcing localization is constrained upstream from the lower branch. Afterwards, a parametric study with respect to the Mach number of the 2D receptivity of the laminar shock wave/boundary layer interaction flow has allowed to analyze the growth of Kelvin-Helmholtz and Tollmien-Schlichting instabilities (TS) occurring at high frequencies. At low frequencies, the receptivity of the system has been linked to the resonance of a stable global mode. Furthermore, the 2D numerical method has been extended to allow the computation of 3D perturbations. This approach has been applied to a supersonic boundary layer flow at M=4.5 in which the 3D non-modal growth of streaks has been identified, as well as the development of oblique TS waves, whose growth is larger than the one associated to 2D waves in compressible regime. This study has also allowed to detect the growth of Mack mode at higher frequencies.
2

Subcritical and supercritical dynamics of incompressible flow over miniaturized roughness elements / Dynamique souscritique et supercritique d’un écoulement incompressible autourd’éléments de micro-rugosité

Bucci, Michele Alessandro 04 December 2017 (has links)
Cette thèse vise à mettre en évidence les limites du contrôle passif en utilisant des éléments de rugosité miniaturisés. La topologie des écoulements induite par la présence d’une rugosité cylindrique et des générateurs de tourbillons miniaturisés a été étudiée pour analyser la dynamique pour des temps court et long. Différentes bifurcations supercritiques ont été examinées au moyen d’une analyse de stabilité globale. La bifurcation souscritique est déclenchée par des mécanismes de croissance transitoire de l'énergie ou par la réceptivité de modes globaux stables. Des structures deforçage optimal 3D sont extraites pour comprendre la distribution spatiale liée à la fréquence de résonance du système. La simulation numérique directe perturbée révèle le rôle central du mode global le moins stable dans les instationnarités non-linéaires observées. Une analyse détaillée des structures tourbillonnaires montre qu’elles sont principalement liées aux mécanismes linéaires sous-jacents. La principale caractéristique globale du mode propre est liée à la présence d’une zone de séparation en aval de la rugosité cylindrique. En utilisant des générateurs de tourbillon miniaturisés, cette zone de séparation est fortement diminuée et aucun mode global isolé est alors présent. La dynamique de l’écoulement se révèle être conduit non seulement par le nombre de Reynolds de rugosité et par son rapport d'aspect géométrique, mais aussi par le rapport entre la hauteur de la rugosité et l’epaisseur de couche limite. / This thesis aims at highlighting the limits of passive control by usingminiaturized roughness elements. The flow topology induced by the presence ofcylindrical roughness and miniaturized vertex generators has been studied to uncover asymptotic and short time dynamics. Supercritical bifurcations has been investigated by means of global stability analysis. Subcritical bifurcation are induced by transient growth of the energy or receptivity of stable global modes. 3D optimal forcing structures are extracted to figure out the spatial distribution linked to the resonant pulsation. Perturbed direct numerical simulation reveals the pivotal role of the less steady global mode in the non-linear unsteadiness. A detailed analysis of the flowstructures is provided and linked to the involved linear mechanisms. Global feature of the eigenmode are linked to the presence of the separation zone behind the cylindrical roughness. By using miniaturized vortex generators the separation zone is suppressed and no isolated global modes are present. The flow dynamics turns out to be driven not only by roughness Reynolds number and geometrical aspect ratio but also by the ratio between the roughness height and the boundary layer thickens.
3

Global stability analysis of three-dimensional boundary layer flows

Brynjell-Rahkola, Mattias January 2015 (has links)
This thesis considers the stability and transition of incompressible boundary layers. In particular, the Falkner–Skan–Cooke boundary layer subject to a cylindrical surface roughness, and the Blasius boundary layer with applied localized suction are investigated. These flows are of great importance within the aviation industry, feature complex transition scenarios, and are strongly three-dimensional in nature. Consequently, no assumptions regarding homogeneity in any of the spatial directions are possible, and the stability of the flow is governed by an extensive three-dimensional eigenvalue problem. The stability of these flows is addressed by high-order direct numerical simulations using the spectral element method, in combination with a Krylov subspace projection method. Such techniques target the long-term behavior of the flow and can provide lower limits beyond which transition is unavoidable. The origin of the instabilities, as well as the mechanisms leading to transition in the aforementioned cases are studied and the findings are reported. Additionally, a novel method for computing the optimal forcing of a dynamical system is developed. This type of analysis provides valuable information about the frequencies and structures that cause the largest energy amplification in the system. The method is based on the inverse power method, and is discussed in the context of the one-dimensional Ginzburg–Landau equation and a two-dimensional flow case governed by the Navier–Stokes equations. / <p>QC 20151015</p>
4

Studies on instability and optimal forcing of incompressible flows

Brynjell-Rahkola, Mattias January 2017 (has links)
This thesis considers the hydrodynamic instability and optimal forcing of a number of incompressible flow cases. In the first part, the instabilities of three problems that are of great interest in energy and aerospace applications are studied, namely a Blasius boundary layer subject to localized wall-suction, a Falkner–Skan–Cooke boundary layer with a localized surface roughness, and a pair of helical vortices. The two boundary layer flows are studied through spectral element simulations and eigenvalue computations, which enable their long-term behavior as well as the mechanisms causing transition to be determined. The emergence of transition in these cases is found to originate from a linear flow instability, but whereas the onset of this instability in the Blasius flow can be associated with a localized region in the vicinity of the suction orifice, the instability in the Falkner–Skan–Cooke flow involves the entire flow field. Due to this difference, the results of the eigenvalue analysis in the former case are found to be robust with respect to numerical parameters and domain size, whereas the results in the latter case exhibit an extreme sensitivity that prevents domain independent critical parameters from being determined. The instability of the two helices is primarily addressed through experiments and analytic theory. It is shown that the well known pairing instability of neighboring vortex filaments is responsible for transition, and careful measurements enable growth rates of the instabilities to be obtained that are in close agreement with theoretical predictions. Using the experimental baseflow data, a successful attempt is subsequently also made to reproduce this experiment numerically. In the second part of the thesis, a novel method for computing the optimal forcing of a dynamical system is developed. The method is based on an application of the inverse power method preconditioned by the Laplace preconditioner to the direct and adjoint resolvent operators. The method is analyzed for the Ginzburg–Landau equation and afterwards the Navier–Stokes equations, where it is implemented in the spectral element method and validated on the two-dimensional lid-driven cavity flow and the flow around a cylinder. / <p>QC 20171124</p>

Page generated in 0.0645 seconds