11 |
Multi-objective day-ahead scheduling of microgrids using modified grey wolf optimizer algorithmJavidsharifi, M., Niknam, T., Aghaei, J., Mokryani, Geev, Papadopoulos, P. 10 August 2018 (has links)
Yes / Investigation of the environmental/economic optimal operation management of a microgrid (MG) as a case study for applying a novel modified multi-objective grey wolf optimizer (MMOGWO) algorithm is presented in this paper. MGs can be considered as a fundamental solution in order for distributed generators’ (DGs) management in future smart grids. In the multi-objective problems, since the objective functions are conflict, the best compromised solution should be extracted through an efficient approach. Accordingly, a proper method is applied for exploring the best compromised solution. Additionally, a novel distance-based method is proposed to control the size of the repository within an aimed limit which leads to a fast and precise convergence along with a well-distributed Pareto optimal front. The proposed method is implemented in a typical grid-connected MG with non-dispatchable units including renewable energy sources (RESs), along with a hybrid power source (micro-turbine, fuel-cell and battery) as dispatchable units, to accumulate excess energy or to equalize power mismatch, by optimal scheduling of DGs and the power exchange between the utility grid and storage system. The efficiency of the suggested algorithm in satisfying the load and optimizing the objective functions is validated through comparison with different methods, including PSO and the original GWO. / Supported in part by Royal Academy of Engineering Distinguished Visiting Fellowship under Grant DVF1617\6\45
|
12 |
Optimisation de systèmes de production intermittents non conventionnels couplés au réseau électrique / Optimization of non-conventional and intermittent generation systems coupled to the electrical gridNguyen Ngoc, Phuc Diem 20 April 2011 (has links)
L'énergie éolienne jouant un rôle de plus en plus important dans le réseau électrique, elle ne peut plus être considérée comme une source d'énergie marginale. Par conséquent, l'impact sur le réseau de l'intermittence, inhérente à ce type d'énergie devient non négligeable. L'utilisation du stockage est une des principales solutions à ce problème d'intégration. Ce travail porte sur l'optimisation du système éolien/stockage en considérant la dynamique de l'éolien, la capacité de stockage et l'interaction avec le réseau. L'objectif consiste à répondre aux exigences du réseau en limitant les fluctuations, à fournir des services-systèmes tout en mettant en avant la rentabilité économique du système. La méthode de gestion proposée s'appuie sur deux niveaux de pilotage : l'anticipation et la gestion réactive. La première phase consiste à utiliser des informations de prévisions (météorologiques, contraintes du réseau, conditions du marché électrique...) afin de définir par avance le programme de fonctionnement optimal du système de stockage. La deuxième phase étudie le fonctionnement en temps réel, où le système doit faire face aux perturbations et respecter les règles du mécanisme d'ajustement. Le problème est complexe avec de nombreuses variables de contrôle discrètes et continues. La Programmation Mixte Linéaire (PML) est utilisée pour résoudre efficacement le problème. La stratégie de fonctionnement optimale proposée sera validée sur un simulateur hors temps réel et un simulateur en temps réel. / Wind energy playing an increasingly important role in the electrical network and it will no longer be considered as a marginal. Therefore, the impact on the electrical grid of its inherent intermittency becomes non-negligible. The use of storage means is one of key points in the integration problem. In this work, the optimization of the wind/storage system is addressed by considering the dynamics of the wind power, the storage capacity and the grid constraints. The main objective is to meet the grids requirements in limiting the fluctuations, providing possible ancillary services and highlighting the economic profitability of system. The proposed method relies on a two levels control approach: anticipation and reactive management. The first one consists in using forecast information (weather, grid constraints, electrical market conditions …) to define in advance the optimal operation schedule for the storage system. In the second one, on real time operation, the system has to deal with possible disturbances and take the right adjustment control with the actual capacity. The problem is complex with numerous discrete control variables and continuous ones. A mixed-integer linear programming (MILP) is used to efficiently solve the problem. The proposed optimal operation strategy will be validated with on an offline simulation (simulink/Matlab) and a real time simulator.
|
13 |
Detention-based Green/Gray Infrastructure Framework to Control Combined Sewer OverflowsMancipe Muñoz, Nestor Alonso 19 October 2015 (has links)
No description available.
|
Page generated in 0.0127 seconds