• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hierarchical Bayesian optimization of targeted motor outputs with spatiotemporal neurostimulation

Laferrière Cyr, Samuel 12 1900 (has links)
Ce mémoire par article part de la question suivante: pouvons-nous utiliser des prothèses neurales afin d’activer artificiellement certain muscles dans le but d’accélérer la guérison et le réapprentissage du contrôle moteur après un AVC ou un traumatisme cervical ? Cette question touche plus de 15 millions de personnes chaque année à travers le monde, et est au coeur de la recherche de Numa Dancause et Marco Bonizzato, nos collaborateurs dans le département de Neuroscience de l’Université de Montréal. Il est maintenant possible d’implanter des électrodes à grande capacité dans le cortex dans le but d’acheminer des signaux électriques, mais encore difficile de prédire l’effet de stimulations sur le cerveau et le reste du corps. Cependant, des résultats préliminaires prometteurs sur des rats et singes démontrent qu’une récupération motrice non-négligeable est observée après stimulation de régions encore fonctionnelles du cortex moteur. Les difficultés rattachées à l’implémentation optimale de stimulation motocorticale consistent donc à trouver une de ces régions, ainsi qu’un protocole de stimulation efficace à la récupération. Bien que cette optimisation a été jusqu’à présent faite à la main, l’émergence d’implants capables de livrer des signaux sur plusieurs sites et avec plusieurs patrons spatio-temporels rendent l’exploration manuelle et exhaustive impossible. Une approche prometteuse afin d’automatiser et optimiser ce processus est d’utiliser un algorithme d’exploration bayésienne. Mon travail a été de déveloper et de raffiner ces techniques avec comme objectif de répondre aux deux questions scientifiques importantes suivantes: (1) comment évoquer des mouvements complexes en enchainant des microstimulations corticales ?, et (2) peuvent-elles avoir des effets plus significatifs que des stimulations simples sur la récupération motrice? Nous présentons dans l’article de ce mémoire notre approche hiérarchique utilisant des processus gaussiens pour exploiter les propriétés connues du cerveau afin d’accélérer la recherche, ainsi que nos premiers résultats répondant à la question 1. Nous laissons pour des travaux futur une réponse définitive à la deuxième question. / The idea for this thesis by article sprung from the following question: can we use neural prostheses to stimulate specific muscles in order to help recovery of motor control after stroke or cervical injury? This question is of crucial importance to 15 million people each year around the globe, and is at the heart of Numa Dancause and Marco Bonizzato’s research, our collaborators in the Neuroscience department at the University of Montreal. It is now possible to implant large capacity electrodes for electrical stimulation in cortex, but still difficult to predict their effect on the brain and the rest of the body. Nevertheless, preliminary but promising results on rats and monkeys have shown that a non-negligible motor recovery is obtained after stimulation of regions of motor cortex that are still functional. The difficulties related to optimal microcortical stimulation hence consist in finding both one of these regions, and a stimulation protocol with optimal recovery efficacy. This search has up to present day been performed by hand, but recent and upcoming large scale stimulation technologies permitting delivery of spatio-temporal signals are making such exhaustive searches impossible.A promising approach to automating and optimizing this discovery is the use of Bayesian optimization. My work has consisted in developing and refining such techniques with two scientific questions in mind: (1) how can we evoke complex movements by chaining cortical microstimulations?, and (2) can these outperform single channel stimulations in terms of recovery efficacy? We present in the main article of this thesis our hierarchical Bayesian optimization approach which uses gaussian processes to exploit known properties of the brain to speed up the search, as well as first results answering question 1. We leave to future work a definitive answer to the second question.

Page generated in 0.1237 seconds