• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6773
  • 2452
  • 1001
  • 805
  • 778
  • 234
  • 168
  • 120
  • 84
  • 79
  • 70
  • 63
  • 54
  • 52
  • 50
  • Tagged with
  • 15011
  • 2422
  • 1971
  • 1814
  • 1642
  • 1528
  • 1382
  • 1328
  • 1285
  • 1254
  • 1220
  • 1115
  • 973
  • 929
  • 927
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

Asymptotics of nonparametric methods in estimation, inference and optimisation

Bull, Adam January 2012 (has links)
No description available.
732

Decomposition algorithm applied to nonlinear optimization problems

Schulein, John Michael, 1943- January 1967 (has links)
No description available.
733

Optimum design methods

Trondsen, Torvald, 1933- January 1969 (has links)
No description available.
734

Sub-optimal closed-loop control of nonlinear systems using invariant imbedding techniques

Steinway, W. J. (William J.) January 1967 (has links)
No description available.
735

Impact of Data Collection and Calibration of Water Distribution Models on Model-Based Decisions

Sumer, Derya January 2007 (has links)
Mathematical models of water distribution systems (WDS) serve as tools to represent the real systems for many different purposes. Calibration is the process of fine tuning the model parameters so that the real system is well-represented. In practice, calibration is performed considering all information is deterministic. Recent researches have incorporated uncertainties caused by field measurements into the calibration process. Parameter (D-optimality) and predictive (I-optimality) uncertainties have been used as indicators of how well a system is calibrated.This study focuses on a methodology that extends previous work by considering the impact of uncertainty on decisions that are made using the model. A new sampling strategy that would take into account the accuracy needed for different model objectives is proposed.The methodology uses an optimization routine that minimizes square differences between the observed and model calculated head values by adjusting the model parameters. Given uncertainty in measurements, the parameters from this nonlinear regression are imprecise and the model parameter uncertainties are computed using a first order second moment (FOSM) analysis. Parameter uncertainties are then propagated to model prediction uncertainties through a second FOSM analysis. Finally, the prediction uncertainty relationships are embedded in optimization problems to assess the effect of the uncertainties on model-based decisions. Additional data is collected provided that the monetary benefits of reducing uncertainties can be addressed.The proposed procedure is first applied on a small hypothetical network for a system expansion design problem using a steady state model. It is hypothesized that the model accuracy and data required calibrating WDS models with different objectives would require different amount of data. A real-scale network for design and operation problems is studied using the same methodology for comparison. The effect of a common practice, grouping pipes in the system, is also examined in both studies.Results suggest that the cost reductions are related to the convergence of the mean parameter estimates and the reduction of parameter variances. The impact of each factor changes during the calibration process as the parameters become more precise and the design is modified. Identification of the cause of cost changes, however, is not always obvious.
736

Drilling optimization using drilling simulator software

Salas Safe, Jose Gregorio 30 September 2004 (has links)
Drilling operations management will face hurdles to reduce costs and increase performance, and to do this with less experience and organizational drilling capacity. A technology called Drilling Simulators Software has shown an extraordinary potential to improve the drilling performance and reduce risk and cost. Different approaches have been made to develop drilling-simulator software. The Virtual Experience Simulator, geological drilling logs, and reconstructed lithology are some of the most successful. The drilling simulations can run multiple scenarios quickly and then update plans with new data to improve the results. Its storage capacity for retaining field drilling experience and knowledge add value to the program. This research shows the results of using drilling simulator software called Drilling Optimization Simulator (DROPS®) in the evaluation of the Aloctono block, in the Pirital field, eastern Venezuela. This formation is characterized by very complex geology, containing faulted restructures, large dips, and hard and abrasive rocks. The drilling performance in this section has a strong impact in the profitability of the field. A number of simulations using geological drilling logs and the concept of the learning curve defined the optimum drilling parameters for the block. The result shows that DROPS® has the capability to simulate the drilling performance of the area with reasonable accuracy. Thus, it is possible to predict the drilling performance using different bits and the learning-curve concept to obtain optimum drilling parameters. All of these allow a comprehensive and effective cost and drilling optimization.
737

Nonlinear continuous feedback controllers

Sitharaman, Sai Ganesh 30 September 2004 (has links)
Packet-switched communication networks such as today's Internet are built with several interconnected core and distribution packet forwarding routers and several sender and sink transport agents. In order to maintain stability and avoid congestion collapse in the network, the sources control their rate behavior and voluntarily adjust their sending rates to accommodate other sources in the network. In this thesis, we study one class of sender rate control that is modeled using continuous first-order differential equation of the sending rates. In order to adjust the rates appropriately, the network sends continuous packet-loss feedback to the sources. We study a form of closed-loop feedback congestion controllers whose rate adjustments exhibit a nonlinear form. There are three dimensions to our work in this thesis. First, we study the network optimization problem in which sources choose utilities to maximize their underlying throughput. Each sender maximizes its utility proportional to the throughput achieved. In our model, sources choose a utility function to define their level of satisfaction of the underlying resource usages. The objective of this direction is to establish the properties of source utility functions using inequality constrained bounded sets and study the functional forms of utilities against a chosen rate differential equation. Second, stability of the network and tolerance to perturbation are two essential factors that keep communication networks operational around the equilibrium point. Our objective in this part of the thesis is to analytically understand the existence of local asymptotic stability of delayed-feedback systems under homogeneous network delays. Third, we propose a novel tangential controller for a generic maximization function and study its properties using nonlinear optimization techniques. We develop the necessary theoretical background and the properties of our controller to prove that it is a better rate adaptation algorithm for logarithmic utilities compared to the well-studied proportional controllers. We establish the asymptotic local stability of our controller with upper bounds on the increase / decrease gain parameters.
738

Novel cost allocation framework for natural gas processes: methodology and application to plan economic optimization

Jang, Won-Hyouk 30 September 2004 (has links)
Natural gas plants can have multiple owners for raw natural gas streams and processing facilities as well as for multiple products. Therefore, a proper cost allocation method is necessary for taxation of the profits from natural gas and crude oil as well as for cost sharing among gas producers. However, cost allocation methods most often used in accounting, such as the sales value method and the physical units method, may produce unacceptable or even illogical results when applied to natural gas processes. Wright and Hall (1998) proposed a new approach called the design benefit method (DBM), based upon engineering principles, and Wright et al. (2001) illustrated the potential of the DBM for reliable cost allocation for natural gas processes by applying it to a natural gas process. In the present research, a rigorous modeling technique for the DBM has been developed based upon a Taylor series approximation. Also, we have investigated a cost allocation framework that determines the virtual flows, models the equipment, and evaluates cost allocation for applying the design benefit method to other scenarios, particularly those found in the petroleum and gas industries. By implementing these individual procedures on a computer, the proposed framework easily can be developed as a software package, and its application can be extended to large-scale processes. To implement the proposed cost allocation framework, we have investigated an optimization methodology specifically geared toward economic optimization problems encountered in natural gas plants. Optimization framework can provide co-producers who share raw natural gas streams and processing plants not only with optimal operating conditions but also with valuable information that can help evaluate their contracts. This information can be a reasonable source for deciding new contracts for co-producers. For the optimization framework, we have developed a genetic-quadratic search algorithm (GQSA) consisting of a general genetic algorithm and a quadratic search that is a suitable technique for solving optimization problems including process flowsheet optimization. The GQSA inherits the advantages of both genetic algorithms and quadratic search techniques, and it can find the global optimum with high probability for discontinuous as well as non-convex optimization problems much faster than general genetic algorithms.
739

Optimization and Search in Model-Based Automotive SW/HW Development

Lianjie, Shen January 2014 (has links)
In this thesis two case studies are performed about solving two design problems we face during the design phase of new Volvo truck. One is to solve the frame packing problem on CAN bus. The other is to solve the LDC allocation problem. Both solutions are targeted to meet as many end-to-end latency requirements as possible. Now the solution is obtained through manually approach and based on the designer experience. But it is still not satisfactory enough. With the development of artificial intelligence method we propose two methods based on genetic algorithm to solve our design problem we face today. In first case study about frame packing we perform one single genetic algorithm process to find the optimal solution. In second case study about LDC allocation we proposed how to handle two genetic algorithm processes together to reach the optimal solution. In this thesis we show the feasibility of adopting artificial intelligence concept in some activities of the truck design phases like we do in both case studies.
740

On optimum sample allocation in multivariate surveys

Kouri, Brian January 1976 (has links)
No description available.

Page generated in 0.116 seconds