• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 19
  • 13
  • 13
  • 11
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 232
  • 232
  • 66
  • 50
  • 48
  • 45
  • 40
  • 40
  • 39
  • 37
  • 32
  • 30
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Seasonal volatility models with applications in option pricing

Doshi, Ankit 03 1900 (has links)
GARCH models have been widely used in finance to model volatility ever since the introduction of the ARCH model and its extension to the generalized ARCH (GARCH) model. Lately, there has been growing interest in modelling seasonal volatility, most recently with the introduction of the multiplicative seasonal GARCH models. As an application of the multiplicative seasonal GARCH model with real data, call prices from the major stock market index of India are calculated using estimated parameter values. It is shown that a multiplicative seasonal GARCH option pricing model outperforms the Black-Scholes formula and a GARCH(1,1) option pricing formula. A parametric bootstrap procedure is also employed to obtain an interval approximation of the call price. Narrower confidence intervals are obtained using the multiplicative seasonal GARCH model than the intervals provided by the GARCH(1,1) model for data that exhibits multiplicative seasonal GARCH volatility.
82

Option Pricing using Fourier Space Time-stepping Framework

Surkov, Vladimir 03 March 2010 (has links)
This thesis develops a generic framework based on the Fourier transform for pricing and hedging of various options in equity, commodity, currency, and insurance markets. The pricing problem can be reduced to solving a partial integro-differential equation (PIDE). The Fourier Space Time-stepping (FST) framework developed in this thesis circumvents the problems associated with the existing finite difference methods by utilizing the Fourier transform to solve the PIDE. The FST framework-based methods are generic, highly efficient and rapidly convergent. The Fourier transform can be applied to the pricing PIDE to obtain a linear system of ordinary differential equations that can be solved explicitly. Solving the PIDE in Fourier space allows for the integral term to be handled efficiently and avoids the asymmetrical treatment of diffusion and integral terms, common in the finite difference schemes found in the literature. For path-independent options, prices can be obtained for a range of stock prices in one iteration of the algorithm. For exotic, path-dependent options, a time-stepping methodology is developed to handle barriers, free boundaries, and exercise policies. The thesis includes applications of the FST framework-based methods to a wide range of option pricing problems. Pricing of single- and multi-asset, European and path-dependent options under independent-increment exponential Levy stock price models, common in equity and insurance markets, can be done efficiently via the cornerstone FST method. Mean-reverting Levy spot price models, common in commodity markets, are handled by introducing a frequency transformation, which can be readily computed via scaling of the option value function. Generating stochastic volatility, to match the long-term equity options market data, and stochastic skew, observed in currency markets, is addressed by introducing a non-stationary extension of multi-dimensional Levy processes using regime-switching. Finally, codependent jumps in multi-asset models are introduced through copulas. The FST methods are computationally efficient, running in O(MN^d log_2 N) time with M time steps and N space points in each dimension on a d-dimensional grid. The methods achieve second-order convergence in space; for American options, a penalty method is used to attain second-order convergence in time. Furthermore, graphics processing units are utilized to further reduce the computational time of FST methods.
83

Essays on the Econometrics of Option Prices

Vogt, Erik January 2014 (has links)
<p>This dissertation develops new econometric techniques for use in estimating and conducting inference on parameters that can be identified from option prices. The techniques in question extend the existing literature in financial econometrics along several directions.</p><p>The first essay considers the problem of estimating and conducting inference on the term structures of a class of economically interesting option portfolios. The option portfolios of interest play the role of functionals on an infinite-dimensional parameter (the option surface indexed by the term structure of state-price densities) that is well-known to be identified from option prices. Admissible functionals in the essay are generalizations of the VIX volatility index, which represent weighted integrals of options prices at a fixed maturity. By forming portfolios for various maturities, one can study their term structure. However, an important econometric difficulty that must be addressed is the illiquidity of options at longer maturities, which the essay overcomes by proposing a new nonparametric framework that takes advantage of asset pricing restrictions to estimate a shape-conforming option surface. In a second stage, the option portfolios of interest are cast as functionals of the estimated option surface, which then gives rise to a new, asymptotic distribution theory for option portfolios. The distribution theory is used to quantify the estimation error induced by computing integrated option portfolios from a sample of noisy option data. Moreover, by relying on the method of sieves, the framework is nonparametric, adheres to economic shape restrictions for arbitrary maturities, yields closed-form option prices, and is easy to compute. The framework also permits the extraction of the entire term structure of risk-neutral distributions in closed-form. Monte Carlo simulations confirm the framework's performance in finite samples. An application to the term structure of the synthetic variance swap portfolio finds sizeable uncertainty around the swap's true fair value, particularly when the variance swap is synthesized from noisy long-maturity options. A nonparametric investigation into the term structure of the variance risk premium finds growing compensation for variance risk at long maturities.</p><p>The second essay, which represents joint work with Jia Li, proposes an econometric framework for inference on parametric option pricing models with two novel features. First, point identification is not assumed. The lack of identification arises naturally when a researcher only has interval observations on option quotes rather than on the efficient option price itself, which implies that the parameters of interest are only partially identified by observed option prices. This issue is solved by adopting a moment inequality approach. Second, the essay imposes no-arbitrage restrictions between the risk-neutral and the physical measures by nonparametrically estimating quantities that are invariant to changes of measures using high-frequency returns data. Theoretical justification for this framework is provided and is based on an asymptotic setting in which the sampling interval of high frequency returns goes to zero as the sampling span goes to infinity. Empirically, the essay shows that inference on risk-neutral parameters becomes much more conservative once the assumption of identification is relaxed. At the same time, however, the conservative inference approach yields new and interesting insights into how option model parameters are related. Finally, the essay shows how the informativeness of the inference can be restored with the use of high frequency observations on the underlying.</p><p>The third essay applies the sieve estimation framework developed in this dissertation to estimate a weekly time series of the risk-neutral return distribution's quantiles. Analogous quantiles for the objective-measure distribution are estimated using available methods in the literature for forecasting conditional quantiles from historical data. The essay documents the time-series properties for a range of return quantiles under each measure and further compares the difference between matching return quantiles. This difference is shown to correspond to a risk premium on binary options that pay off when the underlying asset moves below a given quantile. A brief empirical study shows asymmetric compensation for these return risk premia across different quantiles of the conditional return distribution.</p> / Dissertation
84

Essays in Financial Econometrics

De Lira Salvatierra, Irving January 2015 (has links)
<p>The main goal of this work is to explore the effects of time-varying extreme jump tail dependencies in asset markets. Consequently, a lot of attention has been devoted to understand the extremal tail dependencies between of assets. As pointed by Hansen (2013), the estimation of tail risks dependence is a challenging task and their implications in several sectors of the economy are of great importance. One of the principal challenges is to provide a measure systemic risks that is, in principle, statistically tractable and has an economic meaning. Therefore, there is a need of a standardize dependence measures or at least to provide a methodology that can capture the complexity behind global distress in the economy. These measures should be able to explain not only the dynamics of the most recent financial crisis but also the prior events of distress in the world economy, which is the motivation of this paper. In order to explore the tail dependencies I exploit the information embedded in option prices and intra-daily high frequency data. </p><p>The first chapter, a co-authored work with Andrew Patton, proposes a new class of dynamic copula models for daily asset returns that exploits information from high frequency (intra-daily) data. We augment the generalized autoregressive score (GAS) model of Creal, et al. (2013) with high frequency measures such as realized correlation to obtain a "GRAS" model. We find that the inclusion of realized measures significantly improves the in-sample fit of dynamic copula models across a range of U.S. equity returns. Moreover, we find that out-of-sample density forecasts from our GRAS models are superior to those from simpler models. Finally, we consider a simple portfolio choice problem to illustrate the economic gains from exploiting high frequency data for modeling dynamic dependence.</p><p>In the second chapter using information from option prices I construct two new measures of dependence between assets and industries, the Jump Tail Implied Correlation and the Tail Correlation Risk Premia. The main contribution in this chapter is the construction of a systemic risk factor from daily financial measures using a quantile-regression-based methodology. In this direction, I fill the existing gap between downturns in the financial sector and the real economy. I find that this new index performs well to forecast in-sample and out-of-sample quarterly macroeconomic shocks. In addition, I analyze whether the tail risk of the correlation may be priced. I find that for the S&P500 and its sectors there is an ex ante premium to hedge against systemic risks and changes in the aggregate market correlation. Moreover, I provide evidence that the tails of the implied correlation have remarkable predictive power for future stock market returns.</p> / Dissertation
85

Pricing, no-arbitrage bounds and robust hedging of installment options

Davis, Mark, Schachermayer, Walter, Tompkins, Robert G. January 2000 (has links) (PDF)
An installment option is a European option in which the premium, instead of being paid up-front, is paid in a series of installments. If all installments are paid the holder receives the exercise value, but the holder has the right to terminate payments on any payment date, in which case the option lapses with no further payments on either side. We discuss pricing and risk management for these options, in particular the use of static hedges, and also study a continuous-time limit in which premium is paid at a certain rate per unit time. (author's abstract) / Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
86

The Black-Scholes and Heston Models for Option Pricing

Ye, Ziqun 14 May 2013 (has links)
Stochastic volatility models on option pricing have received much study following the discovery of the non-at implied surface following the crash of the stock markets in 1987. The most widely used stochastic volatility model is introduced by Heston (1993) because of its ability to generate volatility satisfying the market observations, being non-negative and mean-reverting, and also providing a closed-form solution for the European options. However, little research has been done on Heston model used to price early-exercise options. This presumably is largely due to the absence of a closed-form solution and the increase in computational requirement that complicates the required calibration exercise. This thesis examines the performance of the Heston model versus the Black-Scholes model for the American Style equity option of Microsoft and the index option of S&P 100 index. We employ a finite difference method combined with a Projected Successive Over-relaxation method for pricing an American put option under the Black-Scholes model, while an Alternating Direction Implicit method is utilized to decompose a multi-dimensional partial differential equation into several one dimensional steps under the Heston model. For the calibration of the Heston model, we apply a two step procedure where in the first step we apply an indirect inference method to historical stock prices to estimate diffusion parameters under a probability measure and then use a least squares method to estimate the instantaneous volatility and the market risk premium which are used to switch from working under the probability measure to working under the risk-neutral measure. We find that option price is positively related with the value of the mean reverting speed and the long-term variance. It is not sensitive to the market price of risk and it is negatively related with the risk free rate and the volatility of volatility. By comparing the European put option and the American put option under the Heston model, we observe that their implied volatility generally follow similar patterns. However, there are still some interesting observations that can be made from the comparison of the two put options. First, for the out-of-the-money category, the American and European options have rather comparable implied volatilities with the American options' implied volatility being slightly bigger than the European options. While for the in-the-money category, the implied volatility of the European options is notably higher than the American options and its value exceeds the implied volatility of the American options. We also assess the performance of the Heston model by comparing its result with the result from the Black-Scholes model. We observe that overall the Heston model performs better than the Black-Scholes model. In particular, the Heston model has tendency of underpricing the in-the-money option and overpricing the out-of-the-money option. Whereas, the Black-Scholes model is inclined to underprice both the in-the-money option and the out-of-the-money option.b
87

Local Volatility Calibration on the Foreign Currency Option Market / Kalibrering av lokal volatilitet på valutaoptionsmarknaden

Falck, Markus January 2014 (has links)
In this thesis we develop and test a new method for interpolating and extrapolating prices of European options. The theoretical base originates from the local variance gamma model developed by Carr (2008), in which the local volatility model by Dupire (1994) is combined with the variance gamma model by Madan and Seneta (1990). By solving a simplied version of the Dupire equation under the assumption of a continuous ve parameter di usion term, we derive a parameterization dened for strikes in an interval of arbitrary size. The parameterization produces positive option prices which satisfy both conditions for absence of arbitrage in a one maturity setting, i.e. all adjacent vertical spreads and buttery spreads are priced non-negatively. The method is implemented and tested in the FX-option market. We suggest two sub-models, one with three and one with ve degrees of freedom. By using a least-square approach, we calibrate the two sub-models against 416 Reuters quoted volatility smiles. Both sub-models succeeds in generating prices within the bid-ask spread for all options in the sample. Compared to the three parameter model, the model with ve parameters calibrates more exactly to market quoted mids but has a longer calibration time. The three parameter model calibrates remarkably quickly; in a MATLAB implementation using a Levenberg-Marquardt algorithm the average calibration time is approximately 1 ms. Both sub-models produce volatility smiles which are C2 and well-behaving. Further, we suggest a technique allowing for arbitrage-free interpolation of calibrated option price functions in the maturity dimension. The interpolation is performed in parameter space, where every set of parameters uniquely determines an option price function. Furthermore, we produce sucient conditions to ensure absence of calendar spread arbitrage when calibrating the proposed model to several maturities. We use this technique to produce implied volatility surfaces which are suciently smooth, satisfy all conditions for absence of arbitrage and fit market quoted volatility surfaces within the bid-ask spread. In the final chapter we use the results for producing Dupire local volatility surfaces and for pricing variance swaps.
88

Fast fourier transform for option pricing: improved mathematical modeling and design of an efficient parallel algorithm

Barua, Sajib 19 May 2005 (has links)
The Fast Fourier Transform (FFT) has been used in many scientific and engineering applications. The use of FFT for financial derivatives has been gaining momentum in the recent past. In this thesis, i) we have improved a recently proposed model of FFT for pricing financial derivatives to help design an efficient parallel algorithm. The improved mathematical model put forth in our research bridges a gap between quantitative approaches for the option pricing problem and practical implementation of such approaches on modern computer architectures. The thesis goes further by proving that the improved model of fast Fourier transform for option pricing produces accurate option values. ii) We have developed a parallel algorithm for the FFT using the classical Cooley-Tukey algorithm and improved this algorithm by introducing a data swapping technique that brings data closer to the respective processors and hence reduces the communication overhead to a large extent leading to better performance of the parallel algorithm. We have tested the new algorithm on a 20 node SunFire 6800 high performance computing system and compared the new algorithm with the traditional Cooley-Tukey algorithm. Option values are calculated for various strike prices with a proper selection of strike-price spacing to ensure fine-grid integration for FFT computation as well as to maximize the number of strikes lying in the desired region of the stock price. Compared to the traditional Cooley-Tukey algorithm, the current algorithm with data swapping performs better by more than 15% for large data sizes. In the rapidly changing market place, these improvements could mean a lot for an investor or financial institution because obtaining faster results offers a competitive advantages.
89

Parallel algorithm design and implementation of regular/irregular problems: an in-depth performance study on graphics processing units

Solomon, Steven 16 January 2012 (has links)
Recently, interest in the Graphics Processing Unit (GPU) for general purpose parallel applications development and research has grown. Much of the current research on the GPU focuses on the acceleration of regular problems, as irregular problems typically do not provide the same level of performance on the hardware. We explore the potential of the GPU by investigating four problems on the GPU with regular and/or irregular properties: lookback option pricing (regular), single-source shortest path (irregular), maximum flow (irregular), and the task matching problem using multi-swarm particle swarm optimization (regular with elements of irregularity). We investigate the design, implementation, optimization, and performance of these algorithms on the GPU, and compare the results. Our results show that the regular problem achieves greater performance and requires less development effort than the irregular problems. However, we find the GPU to still be capable of providing high levels of acceleration for irregular problems.
90

Seasonal volatility models with applications in option pricing

Doshi, Ankit 03 1900 (has links)
GARCH models have been widely used in finance to model volatility ever since the introduction of the ARCH model and its extension to the generalized ARCH (GARCH) model. Lately, there has been growing interest in modelling seasonal volatility, most recently with the introduction of the multiplicative seasonal GARCH models. As an application of the multiplicative seasonal GARCH model with real data, call prices from the major stock market index of India are calculated using estimated parameter values. It is shown that a multiplicative seasonal GARCH option pricing model outperforms the Black-Scholes formula and a GARCH(1,1) option pricing formula. A parametric bootstrap procedure is also employed to obtain an interval approximation of the call price. Narrower confidence intervals are obtained using the multiplicative seasonal GARCH model than the intervals provided by the GARCH(1,1) model for data that exhibits multiplicative seasonal GARCH volatility.

Page generated in 0.106 seconds