• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 46
  • 1
  • 1
  • Tagged with
  • 100
  • 32
  • 26
  • 17
  • 15
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

KMU-Finanzierung mit Mezzanine-Kapital Produktgestaltung und Prozesse /

Stettler, Matthias. January 2006 (has links) (PDF)
Bachelor-Arbeit Univ. St. Gallen, 2006.
92

Symmetriereduktionen und explizite Lösungen für ein nichtlineares Modell eines Preisbildungsprozesses in illiquiden Märkten

Chmakova, Alina Y. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2005--Cottbus.
93

Konvergenzbeschleunigung für Binomialmethoden zur Bewertung von Barriereoptionen

Ilzig, Katrin, Starkloff, Hans-Jörg, Wunderlich, Ralf 26 August 2004 (has links)
Für die Bewertung zahlreicher Barriereoptionen stehen keine analytischen Preisformeln zur Verfügung. Ein mögliches Näherungsverfahren, welches für die Bepreisung eingesetzt werden kann, ist das Binomialmodell. Dieser Artikel analysiert die bei der binomialen Bewertung von Barriereoptionen auftretende Sägezahnkonvergenz. Es werden vier Verfahren mit verbesserten Konvergenzverhalten beschrieben. Dabei stellt sich heraus, daß durch alle betrachteten Verfahren eine deutliche Konvergenzbeschleunigung erreicht werden kann. Numerische Beispiele illustrieren die vorgestellten Verfahren.
94

A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial Assets

Krämer, Romy, Richter, Matthias 19 May 2008 (has links) (PDF)
In this paper, we study mathematical properties of a generalized bivariate Ornstein-Uhlenbeck model for financial assets. Originally introduced by Lo and Wang, this model possesses a stochastic drift term which influences the statistical properties of the asset in the real (observable) world. Furthermore, we generali- ze the model with respect to a time-dependent (but still non-random) volatility function. Although it is well-known, that drift terms - under weak regularity conditions - do not affect the behaviour of the asset in the risk-neutral world and consequently the Black-Scholes option pricing formula holds true, it makes sense to point out that these regularity conditions are fulfilled in the present model and that option pricing can be treated in analogy to the Black-Scholes case.
95

Pricing in (in)complete markets : structural analysis and applications /

Esser, Angelika, January 1900 (has links)
Originally presented as the author's thesis (Ph.D. - Goethe-University, Frankfurt am Main) titled "Pricing in (in)complete markets : structural analysis and applications," May 2003. / Includes bibliographical references (p. [105]-107) and index.
96

Empirischer Vergleich von Optionspreismodellen auf Basis zeitdeformierter Lévy-Prozesse : Kalibrierung, Hedging, Modellrisiko /

Dahlbokum, Achim. January 2008 (has links) (PDF)
Universiẗat, Diss--Köln, 2007.
97

Energy-related commodity futures - statistics, models and derivatives

Börger, Reik H., January 2007 (has links)
Ulm, Univ., Diss., 2007.
98

Stochastic implied volatility : a factor-based model /

Hafner, Reinhold. January 2004 (has links)
Univ., Phil. Diss.--Augsburg, 2004.
99

Real options valuation : the importance of interest rate modelling in theory and practice /

Schulmerich, Marcus. January 1900 (has links)
Originally presented as the author's doctoral thesis to the European Business School, Oestrich-Winkel. / Includes bibliographical reference (p. [345]-353) and index.
100

A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial Assets

Krämer, Romy, Richter, Matthias 19 May 2008 (has links)
In this paper, we study mathematical properties of a generalized bivariate Ornstein-Uhlenbeck model for financial assets. Originally introduced by Lo and Wang, this model possesses a stochastic drift term which influences the statistical properties of the asset in the real (observable) world. Furthermore, we generali- ze the model with respect to a time-dependent (but still non-random) volatility function. Although it is well-known, that drift terms - under weak regularity conditions - do not affect the behaviour of the asset in the risk-neutral world and consequently the Black-Scholes option pricing formula holds true, it makes sense to point out that these regularity conditions are fulfilled in the present model and that option pricing can be treated in analogy to the Black-Scholes case.

Page generated in 0.0806 seconds