• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards high quality and large area two dimensional layered materials: synthesis, transfer and electronic properties. / 邁向高品質, 大面積二維層狀材料: 合成, 轉移及其電學性質 / CUHK electronic theses & dissertations collection / Mai xiang gao pin zhi, da mian ji er wei ceng zhuang cai liao: he cheng, zhuan yi ji qi dian xue xing zhi

January 2013 (has links)
Wan, Xi. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
2

The construction of a focused low energy positron beam facility and its application in the study of various optoelectronic materials

Cheung, Chor-keung., 張初強. January 2006 (has links)
published_or_final_version / abstract / Physics / Doctoral / Doctor of Philosophy
3

Optoelectronic applications of lead halide perovskites

Harwell, Jonathon R. January 2018 (has links)
Hybrid perovskites are a new class of semiconductor which have proven to be an ideal material for making thin film solar cells. They have the advantages of flexibility, low cost, and easy processing, whilst achieving efficiencies competitive with monocrystalline silicon. Many of the properties which make them ideal for solar cells are also applicable to light emitting devices, and there is now increasing interest in their application for light emitting diodes (LEDs) and lasers. This thesis aims to use a range of novel spectroscopy techniques to investigate the origin of these favourable properties, and to exploit these properties to produce high performance distributed feedback lasers. A detailed understanding of the origins of the excellent properties of hybrid perovskites is of crucial importance in the search for new variations with improved performance or lowered toxicity. This thesis uses Kelvin probe, air photoemission, and resonant ultrasound spectroscopy to probe deeply into the underlying physics of hybrid perovskite single crystals and devices. Using these techniques, we are able to produce detailed maps of the energy levels in a common perovskite solar cell, and we also gain strong insight into the underlying strains and instabilities in the perovskite structure that give rise to their elastic properties. The strong light emission of hybrid perovskites is then exploited to produce high quality distributed feedback lasers emitting in the green and infrared part of the spectrum. These lasers are observed to have superior stability, good thresholds, and many interesting beam parameters owing to their high refractive index. We explore a wide range of processing methods in order to achieve the lowest lasing threshold and the best stability. Finally, we investigate the properties of low dimensional perovskites and investigate their potential in optoelectronic applications.
4

Contributions of Lattice Anharmonicities to Optoelectronic Properties of Lead Halide Perovskites

Joshi, Prakriti Pradhan January 2019 (has links)
Lead halide perovskites (LHPs) have forcefully emerged as a promising materials class for next-generation solar cells. The high efficiencies of LHP-based photovoltaics are underpinned by their outstanding optoelectronic properties, including long carrier lifetimes, long carrier diffusion lengths, high radiative efficiencies, and long-lived hot carriers. In conventional semiconductors, high efficiencies are achieved by stringent control over defect densities; higher purity diminishes the number of carrier scattering events and yields better optoelectronic properties. Given the high defect densities of LHPs, these observed behaviors indicate that LHPs are defect-tolerant and disobey this paradigm via dynamic screening of charge carriers. In order to expand the library of defect-tolerant semiconductors, we must elucidate the carrier-lattice interactions that lead to dynamic screening. LHP lattices are highly anharmonic and dynamically disordered, which must play a role in this screening mechanism. This anharmonicity demands a departure from the conventional Fröhlich interaction, which considers the harmonic coupling of a carrier to one phonon, to a picture that incorporates anharmonic phonon-phonon couplings. The objective of this thesis is to investigate the ultrafast anharmonic lattice response associated with dynamic screening of charge carriers. We probe the formation of large polarons in CH3NH3PbBr3 and CsPbBr3 using time-resolved optical Kerr effect spectroscopy. We further investigate the coupling of phonon modes in a model system, CsPbBr3, in the presence of charge carriers using ultrafast coherent phonon spectroscopy.
5

Optical Studies of Excitonic Effects at Two-Dimensional Nanostructure Interfaces

Ajayi, Obafunso January 2017 (has links)
Atomically thin two-dimensional nanomaterials such as graphene and transition metal dichalcogenides (TMDCs) have seen a rapid growth of exploration since the isolation of monolayer graphene. These materials provide a rich field of study for physics and optoelectronics applications. Many applications seek to combine a two dimensional (2D) material with another nanomaterial, either another two dimensional material or a zero (0D) or one dimensional (1D) material. The work in this thesis explores the consequences of these interactions from 0D to 2D. We begin in Chapter 2 with a study of energy transfer at 0D-2D interfaces with quantum dots and graphene. In our work we seek to maximize the rate of energy transfer by reducing the distance between the materials. We observe an interplay with the distance-dependence and surface effects from our halogen terminated quantum dots that affect our observed energy transfer. In Chapter 3 we study supercapacitance in composite graphene oxide- carbon nanotube electrodes. At this 2D-1D interface we observe a compounding effect between graphene oxide and carbon nanotubes. Carbon nanotubes increase the accessible surface area of the supercapacitors and improve conductivity by forming a conductive pathway through electrodes. In Chapter 4 we investigate effective means of improving sample quality in TMDCs and discover the importance of the monolayer interface. We observe a drastic improvement in photoluminescence when encapsulating our TMDCs with Boron Nitride. We measure spectral linewidths approaching the intrinsic limit due to this 2D-2D interface. We also effectively reduce excess charge and thus the trion-exciton ratio in our samples through substrate surface passivation. In Chapter 5 we briefly discuss our investigations on chemical doping, heterostructures and interlayer decoupling in ReS₂. We observe an increase in intensity for p-doped MoS₂ samples. We investigated the charge transfer exciton previously identified in heterostructures. Spectral observation of this interlayer exciton remained elusive in our work but provided the motivation for our work in Chapter 4. We also discuss our preliminary results on interlayer decoupling in ReS₂.
6

Design, Synthesis and Optoelectronic Properties of Monovalent Coinage Metal-Based Functional Materials toward Potential Lighting, Display and Energy-Harvesting Devices

Ghimire, Mukunda Mani 08 1900 (has links)
Groundbreaking progress in molecule-based optoelectronic devices for lighting, display and energy-harvesting technologies demands highly efficient and easily processable functional materials with tunable properties governed by their molecular/supramolecular structure variations. To date, functional coordination compounds whose function is governed by non-covalent weak forces (e.g., metallophilic, dπ-acid/dπ-base stacking, halogen/halogen and/or d/π interactions) remain limited. This is unlike the situation for metal-free organic semiconductors, as most metal complexes incorporated in optoelectronic devices have their function determined by the properties of the monomeric molecular unit (e.g., Ir(III)-phenylpyridine complexes in organic light-emitting diodes (OLEDs) and Ru(II)-polypyridyl complexes in dye-sensitized solar cells (DSSCs)). This dissertation represents comprehensive results of both experimental and theoretical studies, descriptions of synthetic methods and possible application allied to monovalent coinage metal-based functional materials. The main emphasis is given to the design and synthesis of functional materials with preset material properties such as light-emitting materials, light-harvesting materials and conducting materials. In terms of advances in fundamental scientific phenomena, the major highlight of the work in this dissertation is the discovery of closed-shell polar-covalent metal-metal bonds manifested by ligand-unassisted d10-d10 covalent bonds between Cu(I) and Au(I) coinage metals in the ground electronic state (~2.87 Å; ~45 kcal/mol). Moreover, this dissertation also reports pairwise intermolecular aurophilic interactions of 3.066 Å for an Au(I) complex, representing the shortest ever reported pairwise intermolecular aurophilic distances among all coinage metal(I) cyclic trimetallic complexes to date; crystals of this complex also exhibit gigantic luminescence thermochromism of 10,200 cm-1 (violet to red). From applications prospective, the work herein presents monovalent coinage metal-based functional optoelectronic materials such as heterobimetallic complexes with near-unity photoluminescence quantum yield, metallic or semiconducting integrated donor-acceptor stacks and a new class of Au(III)-based black absorbers with cooperative intermolecular iodophilic (I…I) interactions that sensitize the harvesting of all UV, all visible, and a broad spectrum of near-IR regions of the solar spectrum. These novel functional materials of cyclic trimetallic coinage metal complexes have been characterized by a broad suit of spectroscopic and structural analysis methods in the solid state and solution.
7

First-principles Calculations on the Electronic, Vibrational, and Optical Properties of Semiconductor Nanowires

Yang, Li 15 August 2006 (has links)
The first part of my PhD work is about the lattice vibrations in silicon nanowires. First-principles calculations based on the linear response are performed to investigate the quantum confinement effect in lattice vibrations of silicon nanowires (SiNW). The radial breathing modes (RBM) are found in our calculations, which have a different size-dependent frequency shift compared with the optical modes. They are well explained by the elastic model. Finally, the relative activity of the Raman scattering in the smallest SiNW is calculated. The RBM can be clearly identified in the Raman spectrum, which can be used to estimate the size of nanowires in experiment. In the second part of my PhD work, we focus on the electron-hole pair (exciton) in semiconductor nanowires and its influence on the optical absorption spectra. First-principles calculations are performed for a hydrogen-passivated silicon nanowire with a diameter of 1.2 nm. Using plane wave and pseudopotentials, the quasiparticle states are calculated within the so-called GW approximation, and the electron-hole interaction is evaluated with the Bethe-Salpeter Equation (BSE). The enhanced excitonic effect is found in the absorption spectrum. The third part of my work is about the electronic structure in Si/Ge core-shell nanowires. The electronic band structure is studied with first-principles methods. Individual conduction and valence bands are found in the core part and the shell part, respectively. The band offsets are determined, which give rise to the spatial separation of electron and hole charge carriers in different regions of the nanowires. This allows for a novel-doping scheme that supplies the carriers into a separate region in order to avoid the scattering problem. This is the key factor to create high-speed devices. With the confinement effect, our results show important correction in the band offset compared with the bulk heterostructure. Finally, an optimum doping strategy is proposed based on our band-offset data.
8

Quantum structures in photovoltaic devices

Holder, Jenna Ka Ling January 2013 (has links)
A study of three novel solar cells is presented, all of which incorporate a low-dimensional quantum confined component in a bid to enhance device performance. Firstly, intermediate band solar cells (IBSCs) based on InAs quantum dots (QDs) in a GaAs p-i-n structure are studied. The aim is to isolate the InAs QDs from the GaAs conduction band by surrounding them with wider band gap aluminium arsenide. An increase in open circuit voltage (V<sub>OC</sub>) and decrease in short circuit current (J<sub>sc</sub>) is observed, causing no overall change in power conversion efficiency. Dark current - voltage measurements show that the increase in V<sub>OC</sub> is due to reduced recombination. Electroreflectance and external quantum efficiency measurements attribute the decrease in J<sub>sc</sub> primarily to a reduction in InGaAs states between the InAs QD and GaAs which act as an extraction pathway for charges in the control device. A colloidal quantum dot (CQD) bulk heterojunction (BHJ) solar cell composed of a blend of PbS CQDs and ZnO nanoparticles is examined next. The aim of the BHJ is to increase charge separation by increasing the heterojunction interface. Different concentration ratios of each phase are tested and show no change in J<sub>sc</sub>, due primarily to poor overall charge transport in the blend. V<sub>OC</sub> increases for a 30 wt% ZnO blend, and this is attributed largely to a reduction in shunt resistance in the BHJ devices. Finally, graphene is compared to indium tin oxide (ITO) as an alternative transparent electrode in squaraine/ C<sub>70</sub> solar cells. Due to graphene’s high transparency, graphene devices have enhanced J<sub>sc</sub>, however, its poor sheet resistance increases the series resistance through the device, leading to a poorer fill factor. V<sub>OC</sub> is raised by using MoO<sub>3</sub> as a hole blocking layer. Absorption in the squaraine layer is found to be more conducive to current extraction than in the C<sub>70</sub> layer. This is due to better matching of exciton diffusion length and layer thickness in the squaraine and to the minority carrier blocking layer adjacent to the squaraine being more effective than the one adjacent to the C<sub>70</sub>.

Page generated in 0.0756 seconds