• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 13
  • 13
  • 9
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

DEVELOPMENT OF AN OPEN-SOURCE TOOLBOX FOR DESIGN AND ANALYSIS OF ACTIVE DEBRIS REMEDIATION ARCHITECTURES

Joshua David Fitch (16360641) 15 June 2023 (has links)
<p> Orbital Debris is a growing challenge for the Space Industry. The increasing density of derelict objects in high-value orbital regimes is resulting in more conjunction warnings and break-up events with cascading repercussions on active satellites and spacecraft. The recent rapid growth of the commercial space industry, in particular proliferated satellite constellations, has placed orbital debris remediation at the forefront of Space Industry efforts. The need to remove existing debris, combined with a growing demand for active satellite life extension services, has created an emerging market for space logistics, in particular spacecraft capable of rendezvous and docking, orbital refueling, debris deorbiting, or object relocation. This market has seen numerous companies emerge with multi-purpose on-orbit servicing platforms. This ecosystem poses technological, economical, and policy questions to decision-makers looking to acquire platforms or invest in technologies and requires a System-of-Systems approach to determine mission and system concepts of merit. An open-source modeling, analysis, and simulation software toolbox has been developed which enables rapid early-stage analysis and design of diverse fleets of on-orbit servicing platforms, with a specific emphasis on active debris removal applications. The toolbox provides fetching and processing of real-time orbital catalog data, clustering and scoring of high-value debris targets, flexible and efficient multi-vehicle multi-objective time-varying routing optimization, and fleet-level lifecycle cost estimation. The toolbox is applied to a diverse sample of promising commercial platforms to enable government decision-makers to make sound investment and acquisition decisions to support the development of ADR technologies, missions, and companies. </p>
12

Sun-Synchronous Orbit Slot Architecture Analysis and Development

Watson, Eric 01 May 2012 (has links)
Space debris growth and an influx in space traffic will create a need for increased space traffic management. Due to orbital population density and likely future growth, the implementation of a slot architecture to Sun-synchronous orbit is considered in order to mitigate conjunctions among active satellites. This paper furthers work done in Sun-synchronous orbit slot architecture design and focuses on two main aspects. First, an in-depth relative motion analysis of satellites with respect to their assigned slots is presented. Then, a method for developing a slot architecture from a specific set of user defined inputs is derived.
13

Současné výzvy odstraňování vesmírného odpadu: souhrn a perspektiva / Contemporary Challenges of Space Debris Removal: Overview and Outlook

Vojáková, Eliška January 2021 (has links)
CHARLES UNIVERSITY FACULTY OF SOCIAL SCIENCES Institute of Political Studies Department of International Security Studies Contemporary Challenges of Space Debris Removal: Overview and Outlook Abstract in English Author: Eliška Vojáková Study programme: Security Studies Supervisor: Mgr. Bohumil Doboš, Ph.D. Year of the defence: 2021 Abstract The sustainability of the outer space environment is necessary for all actors to execute all existing and future human space operations safely. While the severe negative consequences of the uncontrolled space debris population are not new, government agencies and intergovernmental organizations' initiatives to lessen the predicament continue to be insufficient. Scientific research and simulation models show that mere mitigation measures cannot stop the ongoing degradation of the outer space environment polluted from the past space missions. Instead, research supports the development of space projects designed with a primary objective to remove debris from space. National administrations attempt to cooperate at the international level to formulate uniform debris mitigation standards and hold each other mutually accountable for worsening the space debris situation. However, joint public international missions to actively remove debris remain unthinkable. The privatization...

Page generated in 0.0824 seconds