Spelling suggestions: "subject:"ordnungsreduktion"" "subject:"ladungsreduktion""
31 |
Model order reduction of nonlinear systems: status, open issues, and applicationsStriebel, Michael, Rommes, Joost 16 December 2008 (has links)
In this document we review the status of existing techniques for nonlinear model order reduction by investigating how well these techniques perform for typical industrial needs. In particular the TPWL-method (Trajectory Piecewise Linear-method) and the POD-approach (Proper Orthogonal Decomposion) is taken under consideration. We address several questions that are (closely) related to both the theory and application of nonlinear model order reduction techniques. The goal of this document is to provide an overview of available methods together with a classification of nonlinear problems that in principle could be handled by these methods.
|
32 |
Interpolatory Projection Methods for Parameterized Model ReductionBaur, Ulrike, Beattie, Christopher, Benner, Peter, Gugercin, Serkan 05 January 2010 (has links)
We provide a unifying projection-based framework for structure-preserving interpolatory model reduction of parameterized linear dynamical systems, i.e., systems having a structured dependence on parameters that we wish to retain in the reduced-order model. The parameter dependence may be linear or nonlinear and is retained in the reduced-order model. Moreover, we are able to give conditions under which the gradient and Hessian of the system response with respect to the system parameters is matched in the reduced-order model. We provide a systematic approach built on established interpolatory $\mathcal{H}_2$ optimal model reduction methods that will produce parameterized reduced-order models having high fidelity throughout a parameter range of interest. For single input/single output systems with parameters in the input/output maps, we provide reduced-order models that are \emph{optimal} with respect to an $\mathcal{H}_2\otimes\mathcal{L}_2$ joint error measure. The capabilities of these approaches are illustrated by several numerical examples from technical applications.
|
33 |
Low-rank iterative methods of periodic projected Lyapunov equations and their application in model reduction of periodic descriptor systemsBenner, Peter, Hossain, Mohammad-Sahadet, Stykel, Tatjana January 2011 (has links)
We discuss the numerical solution of large-scale sparse projected discrete-time periodic Lyapunov equations in lifted form which arise in model reduction of periodic descriptor systems. We extend the alternating direction implicit method and the Smith method to such equations. Low-rank versions of these methods are also presented, which can be used to compute low-rank approximations to the solutions of projected periodic Lyapunov equations in lifted form with low-rank right-hand side. Moreover, we consider an application of the Lyapunov solvers to balanced truncation model reduction of periodic discrete-time descriptor systems. Numerical results are given to illustrate the efficiency and accuracy of the proposed methods.:1 Introduction
2 Periodic descriptor systems
3 ADI method for causal lifted Lyapunov equations
4 Smith method for noncausal lifted Lyapunov equations
5 Application to model order reduction
6 Numerical results
7 Conclusions
|
34 |
Ordnungsreduktion in der MikrosystemtechnikGugel, Denis 19 July 2010 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Methode der modalen Superposition als Ordnungsreduktionsverfahren in der Mikrosystemtechnik. Typische Anwendungsgebiete sind Inertialsensoren und dabei im Besonderen Drehratensensoren, für die die Simulation von zeitabhängigen Phänomenen von entscheidender Bedeutung ist.
Im Rahmen der Weiterentwicklung der Ordnungsreduktion nach der Methode der modalen Superposition ist es gelungen für typische lineare Kräfte eine auf analytischen Gleichungen basierende Beschreibung im reduzierten Raum zu finden. Für die Beschreibung von nichtlinearen Kräften ist im Rahmen dieser Arbeit ein Verfahren entwickelt worden, das es erlaubt, bestehende Modelle im Finite-Elemente-Raum in der modalen
Beschreibung zu nutzen.
In dieser Arbeit werden die theoretischen Grundlagen zur Berücksichtigung von Einflüssen der Aufbau- und Verbindungstechnik in ordnungsreduzierten Modellen dargestellt. Neben der Einkopplung äußerer Kräfte und der Veränderung der mechanischen Randbedingungen wird auch der Einfluss der Aufbau- und Verbindungstechnik auf die elektrostatischen Eigenschaften untersucht.
Die Parametrisierung des Verfahrens der modalen Superposition über Fit- und Interpolationsverfahren erlaubt es, parametrisierte ordnungsreduzierte Modelle für die zeitabhängige Systemsimulation zu generieren. Damit wird die Durchführung von Designoptimierung und die Berücksichtigung von Fertigungs- und Prozessschwankungen in ordnungsreduzierten Modellen auf Systemebene möglich. Read more
|
35 |
Balanced truncation model reduction for linear time-varying systemsLang, Norman, Saak, Jens, Stykel, Tatjana 05 November 2015 (has links) (PDF)
A practical procedure based on implicit time integration methods applied to the differential Lyapunov equations arising in the square root balanced truncation method is presented. The application of high order time integrators results in indefinite right-hand sides of the algebraic Lyapunov equations that have to be solved within every time step. Therefore, classical methods exploiting the inherent low-rank structure often observed for practical applications end up in complex data and arithmetic. Avoiding the additional effort treating complex quantities, a symmetric indefinite factorization of both the right-hand side and the solution of the differential Lyapunov equations is applied.
|
36 |
Model Reduction for Piezo-Mechanical Systems using Balanced TruncationUddin, Mohammad Monir 07 November 2011 (has links) (PDF)
Today in the scientific and technological world, physical and artificial processes are often described by mathematical models which can be used for simulation, optimization or control. As the mathematical models get more detailed and different coupling effects are required to include, usually the dimension of these models become very large. Such large-scale systems lead to large memory requirements and computational complexity. To handle these large models efficiently in simulation, control or optimization model order reduction (MOR) is essential. The fundamental idea of model order reduction is to approximate a large-scale model by a reduced model of lower state space dimension that has the same (to the largest possible extent) input-output behavior as the original system. Recently, the system-theoretic method Balanced Truncation (BT) which was believed to be applicable only to moderately sized problems, has been adapted to really large-scale problems. Moreover, it also has been extended to so-called descriptor systems, i.e., systems whose dynamics obey differential-algebraic equations. In this thesis, a BT algorithm is developed for MOR of index-1 descriptor systems based on several papers from the literature. It is then applied to the setting of a piezo-mechanical system. The algorithm is verified by real-world data describing micro-mechanical piezo-actuators. The whole algorithm works for sparse descriptor form of the system. The piezo-mechanical original system is a second order index-1 descriptor system, where mass, damping, stiffness, input and output matrices are highly sparse. Several techniques are introduced to reduce the system into a first order index-1 descriptor system by preserving the sparsity pattern of the original models. Several numerical experiments are used to illustrate the efficiency of the algorithm. Read more
|
37 |
Ordnungsreduktion von elektrostatisch-mechanischen Finite Elemente Modellen für die Mikrosystemtechnik: Ordnungsreduktion von elektrostatisch-mechanischen FiniteElemente Modellen für die MikrosystemtechnikBennini, Fouad 25 January 2005 (has links)
In der vorliegenden Arbeit wird eine Prozedur zur Ordnungsreduktion von Finite Elemente
Modellen mikromechanischer Struktur mit elektrostatischem Wirkprinzip entwickelt und
analysiert. Hintergrund der Ordnungsreduktion ist eine Koordinatentransformation von
lokalen Finite Elemente Koordinaten in globale Koordinaten. Die globalen Koordinaten des
reduzierten Modells werden durch einige wenige Formfunktionen beschrieben. Damit wird
das Makromodell nicht mehr durch lokale Knotenverschiebungen beschrieben, sondern durch
globale Formfunktionen, welche die gesamte Deformation der Struktur beeinflussen. Es wird
gezeigt, dass Eigenvektoren der linearisierten mechanischen Struktur einfache und effiziente
Formfunktionen darstellen. Weiterhin kann diese Methode für bestimmte Nichtlinearitäten
und für verschiedene in Mikrosystemen auftretende Lasten angewendet werden. Das Ergebnis
sind Makromodelle, die über Klemmen in Systemsimulatoren eingebunden werden können,
die Genauigkeiten einer Finite Elemente Analyse erreichen und für Systemsimulationen
typische Laufzeitverhalten besitzen.
|
38 |
Solving Linear Matrix Equations via Rational Iterative SchemesBenner, Peter, Quintana-Ortí, Enrique, Quintana-Ortí, Gregorio 01 September 2006 (has links)
We investigate the numerical solution of stable Sylvester equations via iterative schemes proposed for computing the sign function of a matrix. In particular, we discuss how the rational iterations for the matrix sign function can efficiently be adapted to the special structure implied by the Sylvester equation. For Sylvester equations with factored constant term as those arising in model reduction or image restoration, we derive an algorithm that computes the solution in factored form directly. We also suggest convergence criteria for the resulting iterations and compare the accuracy and performance of the resulting methods with existing Sylvester solvers. The algorithms proposed here are easy to parallelize. We report on the parallelization of those algorithms and demonstrate their high efficiency and scalability using experimental results obtained on a cluster of Intel Pentium Xeon processors.
|
39 |
Parallel Order Reduction via Balanced Truncation for Optimal Cooling of Steel ProfilesBadía, José M., Benner, Peter, Mayo, Rafael, Quintana-Ortí, Enrique S., Quintana-Ortí, Gregorio, Saak, Jens 06 September 2006 (has links)
We employ two efficient parallel approaches to reduce a model arising from a semi-discretization of a controlled heat transfer process for optimal cooling of a steel profile. Both algorithms are based on balanced truncation but differ in the numerical method that is used to solve two dual generalized Lyapunov equations, which is the major computational task. Experimental results on a cluster of Intel Xeon processors compare the efficacy of the parallel model reduction algorithms.
|
40 |
Novel Model Reduction Techniques for Control of Machine ToolsBenner, Peter, Bonin, Thomas, Faßbender, Heike, Saak, Jens, Soppa, Andreas, Zaeh, Michael 13 November 2009 (has links)
Computational methods for reducing the complexity of Finite Element (FE)
models in structural dynamics are usually based on modal analysis.
Classical approaches such as modal truncation, static condensation
(Craig-Bampton, Guyan), and component mode synthesis (CMS) are
available in many CAE tools such as ANSYS. In other disciplines, different
techniques for Model Order Reduction (MOR) have been developed in the
previous 2 decades. Krylov subspace methods are one possible
choice and often lead to much smaller models than modal truncation
methods given the same prescribed tolerance threshold. They have become
available to ANSYS users through the tool mor4ansys. A disadvantage
is that neither modal truncation nor CMS nor Krylov subspace methods
preserve properties important to control design. System-theoretic
methods like balanced truncation approximation (BTA), on the other
hand, are directed towards reduced-order models for use in closed-loop
control. So far, these methods are considered to be too expensive for
large-scale structural models. We show that recent algorithmic
advantages lead to MOR methods that are applicable to FE models in
structural dynamics and that can easily be integrated into CAE
software. We will demonstrate the efficiency of the proposed MOR
method based on BTA using a control system including as plant the FE
model of a machine tool. Read more
|
Page generated in 0.0948 seconds