• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Couplage fluide-structure d'ordre (très) élevé pour des schémas volumes finis 2D Lagrange-projection / High-order fluid-structure coupling with conservative Lagrange-remap finite volume schemes on Cartesian grids

Dakin, Gautier 09 November 2017 (has links)
Ce travail est consacré à l’étude numérique de l’interaction entre un fluide compressible et une structure indéformable, en adaptant une famille récente de schémas d’ordre très élevé à la prise en compte de conditions aux bords particulières entre le fluide et la structure. Plus précisément,on évalue l’apport de schémas d’ordre strictement supérieur à 3 par rapport à des stratégies plus classiques dans la littérature restreintes aux ordres 1 et 2. Un résultat important est qu’il est possible de réaliser le couplage à tout ordre et qu’il existe des configurations pour lesquelles on observe un gain important pour les ordres élevés. Une revue bibliographique est faite rappelant les résultats théoriques concernant les systèmes hyperboliques et décrivant les méthodes utilisées dans la littérature pour la simulation de la dynamique des gaz et la prise en compte des conditions aux bords. Un schéma sur grilles cartésiennes décalées et d’ordre très élevé est proposé pour la résolution des équations d’Euler en 1D/2D. Ce schéma est basé sur le formalisme Lagrange-projection et bien que formulé en énergie interne assure conservation et consistance faible grâce à un correctif en énergie interne. Parallèlement, l’étude pour les systèmes hyperboliques linéaires de discrétisation à l’ordre très élevé des conditions aux bords est faite. Elle met en évidence la nécessité pour l’ordre élevé de s’intéresser à la stabilité des schémas ainsi obtenus. À partir de ces travaux, la prise en compte de conditions aux bords en vitesse normale imposée est réalisée pour les équations d’Euler en 1D et 2D. Enfin, une procédure de couplage entre fluide compressible et structure indéformable est proposée. / This work is devoted to the construction of stable and high-order numerical methods in order to simulate fluid - rigid body interactions. In this manuscript, a bibliographic overview is done, which highlights theoretical results about hyperbolic system of conservation laws, as well as the methods available in the literature for the hydrodynamics simulation and the numericalboundary treatment. A high-order accurate scheme is proposed on staggered Cartesian grids to approximate the solution of Euler equations in 1D and 2D. The scheme relies on Lagrange-remap formalism, and although formulated in internal energy, ensures both conservation and weak consistency thanks to an internal energy corrector. In the same time, the study of high-order numerical boundary treatment for linear hyperbolic system is done. It highlights the necessity to focus especially on the linear stability of the effective scheme. Starting from the linear results, the numerical boundary treatment with imposed normal velocity is done for Euler equations in 1D and 2D. Last, the coupling between a compressible fluid and a rigid body is realized, using the designed procedure for numerical boudary treatment.
2

Couplage d'un schéma aux résidus distribués à l'analyse isogéométrique : méthode numérique et outils de génération et adaptation de maillage

Froehly, Algiane 07 September 2012 (has links) (PDF)
Lors de simulations numériques d'ordre élevé, la discrétisation sous-paramétrique du domaine de calcul peut générer des erreurs dominant l'erreur liée à la discrétisation des variables. De nombreux travaux proposent d'utiliser l'analyse isogéométrique afin de mieux représenter les géométries et de résoudre ce problème. Nous présenterons dans ce travail le couplage du schéma aux résidus distribués limité et stabilisé de Lax-Frieirichs avec l'analyse isogéométrique. En particulier, nous construirons une famille de fonctions de base permettant de représenter exactement les coniques et définies tant sur les éléments triangulaires que quadrangulaires : les fonctions de base de Bernstein rationnelles. Nous nous intéresserons ensuite à la génération de maillages précis pour l'analyse isogéométrique. Notre méthode consiste à créer un maillage courbe à partir d'un maillage linéaire par morceaux de la géométrie. Le maillage obtenu en sortie de notre procédure est non-structuré, conforme et assure la continuité de nos fonctions de base sur tout le domaine. Pour finir, nous décrirons les différentes méthodes d'adaptation de maillages développées : l'élévation d'ordre et le raffinement isotrope. Bien évidemment, la géométrie exacte du maillage courbe d'entrée est préservée au cours des processus d'adaptation.
3

Couplage d’un schéma aux résidus distribués à l’analyse isogéométrique : méthode numérique et outils de génération et adaptation de maillage

Froehly, Algiane 07 September 2012 (has links)
Lors de simulations numériques d’ordre élevé, la discrétisation sous-paramétrique du domaine de calcul peut générer des erreurs dominant l’erreur liée à la discrétisation des variables. De nombreux travaux proposent d’utiliser l’analyse isogéométrique afin de mieux représenter les géométries et de résoudre ce problème.Nous présenterons dans ce travail le couplage du schéma aux résidus distribués limité et stabilisé de Lax-Frieirichs avec l’analyse isogéométrique. En particulier, nous construirons une famille de fonctions de base permettant de représenter exactement les coniques et définies tant sur les éléments triangulaires que quadrangulaires : les fonctions de base de Bernstein rationnelles. Nous nous intéresserons ensuite à la génération de maillages précis pour l’analyse isogéométrique. Notre méthode consiste à créer un maillage courbe à partir d’un maillage linéaire par morceaux de la géométrie. Le maillage obtenu en sortie de notre procédure est non-structuré, conforme et assure la continuité de nos fonctions de base sur tout le domaine. Pour finir, nous décrirons les différentes méthodes d’adaptation de maillages développées : l’élévation d’ordre et le raffinement isotrope. Bien évidemment, la géométrie exacte du maillage courbe d’entrée est préservée au cours des processus d’adaptation. / During high order simulations, the approximation error may be dominated by the errors linked to the sub-parametric discretization used for the geometry representation. Many works propose to use an isogeometric analysis approach to better represent the geometry and hence solve this problem. In this work, we will present the coupling between the limited stabilized Lax-Friedrichs residual distributed scheme and the isogeometric analysis. Especially, we will build a family of basis functions defined on both triangular and quadrangular elements and allowing the exact representation of conics : the rational Bernstein basis functions. We will then focus in how to generate accurate meshes for isogeometric analysis. Our idea is to create a curved mesh from a classical piecewise-linear mesh of the geometry. We obtain a conforming unstructured mesh which ensures the continuity of the basis functions over the entire mesh. Last, we will detail the curved mesh adaptation methods developed : the order elevation and the isotropic mesh refinement. Of course, the adaptation processes preserve the exact geometry of the initial curved mesh.

Page generated in 0.0642 seconds