• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DEVELOPMENT OF AFFINITY GRID MATERIALS FOR CRYOELCTRONIC MICROSCOPY

Md R Hoq (6617981) 12 October 2021 (has links)
<p>Cryogenic transmission electron microscopy (cryoEM) has become an increasingly common tool for determining structures of proteins and protein complex at near atomic resolution. We seek to determine the structure of p97 by cryoEM using an affinity capture approach that employs a family of novel synthetic lipids bearing water soluble PEG units and known high affinity inhibitor molecules at the distal end of the polymer. A library of inhibitor modified affinity lipopolymers of 5000 KD PEG molecular weights were synthesized. The inhibitor modified lipid coated grids were used to capture p97. The reconstruction of p97 revealed the structure at dimeric state at 3.64 Å and monomeric state at 4.33 Å. A PEG unit composed of 20000 KD molecular weight based polyrotaxane containing NTA ligand as affinity tag has been synthesized, used to concentrate 6x-his tagged p97 on TEM which also enabled to see all 3D orientation of the target particles and an initial model of 10.64 Å resolution of p97 structure was resolved. </p>
2

THE GREEN SYNTHESIS AND MATERIAL AND ORGANIC APPLICATIONS OF BORANE-AMINES

Randy L Lin (15405626) 15 April 2024 (has links)
<p dir="ltr">Reported herein is a brief summary regarding the previous syntheses of borane-amines, newly developed protocols to synthesize borane-amines, and the material and synthetic applications utilizing borane-amines. Methods to generate borane-amines typically relied on a metathesis-dehydrogenation reaction between ammonium salts and metal borohydrides in organic solvent, typically hazardous tetrahydrofuran (THF). However, due to the poor solubility of inorganic salts in organic solvent, stirring of the reaction mixture becomes difficult and, in turn, scalability is made challenging. We report two new methods to generate borane-amines that both rely on the hydroboration of sodium borohydride and a carbonyl activator, followed by the S<sub>N</sub>2-type reaction with the amine to form the requisite borane-amine. The activator for our procedures are either 1) gaseous carbon dioxide or 2) water/ethyl acetate system. The CO<sub>2</sub> mediated protocol was applied to a variety of 1°-, 2°-, 3°-, and heteroaromatic amines as well as phosphines to form the corresponding borane adducts (73-99%). Water was also found to be a green, compatible activator. Interestingly, we had swapped environmentally and health hazardous THF with ethyl acetate (EtOAc) and found the reaction had still proceeded with competitive conversion of amines to the borane-amines (72-97%). The robustness of this reaction was demonstrated with a 1.1 mol scale synthesis of borane pyridine with 87% yield. With increased accessibility of borane-amines established, we sought to investigate their potential applications, including testing their hypergolic properties. Additionally, we utilized borane-ammonia for a sequential reduction/Friedel-Crafts alkylation of benzyl carbonyls. Traditionally an alkyl halide, the scope of the electrophilic aromatic substitution reaction has widened to include alcohols and carbonyls as potential Friedel-Crafts reactants. Few reports exist for the arylation of aldehydes and ketones, while no precedence exists for the arylation of carboxylic acids and esters. Our group previously reported that TiCl<sub>4</sub> is capable of eliminating oxygen from benzyl alcohols, forming a carbocation intermediate. Theoretically, the carbocation formed from TiCl<sub>4</sub> and benzyl alcohols would be vulnerable from attacks from other nucleophiles, including pi bonds from arenes. This was indeed proven to be the case when benzyl alcohol was reacted in 1 equiv. TiCl<sub>4 </sub>with benzene as the solvent and diphenylmethane was obtained as the sole product. By including borane-ammonia as a hydride source, various aryl carbonyls and aryl carbinols were also reduced to the corresponding alcohol <i>in situ</i>, enabling these substrates to participate in Friedel-Crafts alkylation.</p>
3

Greener Photoredox-Catalyzed Phosphonations of Aryl Halides

Alexandra Suzanne Kelley (18406143) 03 June 2024 (has links)
<p dir="ltr">Aromatic phosphonates and phosphine oxides are highly desirable synthetic targets used in pharmaceuticals, natural products, agrichemicals, catalysis, and materials science. While a variety of aromatic precursors have been used to access these motifs, aryl halides remain one of the most desirable coupling partners owing to their low cost, commercial availability, and regioselective reactivity. Traditional phosphonation often requires the use of harsh reductants in the presence of liquid ammonia, which are caustic and pose incredible environmental concerns. Milder, transition metal-catalyzed approaches have been developed, but can be limited by air sensitivity, cost, low reaction selectivity, and low functional group compatibility. Photoredox catalysis has been significantly advanced in the past decade in the pursuit of greener, more sustainable avenues to facilitate desirable reaction transformations under mild conditions. These methods most commonly use a dual catalytic strategy in which a metal is paired with an organocatalyst. While these approaches enable facile phosphonation of a variety of aromatic precursors, the metals and organocatalysts used are often expensive and toxic. Indeed, there remains unexplored chemical space for transition metal-free photoredox-catalyzed aryl C-P bond formations. Herein, we present a series of transition metal-free, photoredox-catalyzed approaches to the phosphonation of aryl halides. The approaches and mechanistic works will be discussed in the following order: </p><p dir="ltr">First, the discovery that 10<i>H</i>-phenothiazine (PTZ) enables the transition metal-free phosphonation of aryl halides using trialkyl phosphites will be presented. PTZ serves as a photocatalyst capable of reducing the aryl halide to access aryl radicals, which readily couple with phosphite esters. This transformation exhibits broad functional group tolerance in good to excellent yields. Then, photoredox catalysis by PTZ enables the formation of unsymmetrical aromatic phosphine oxides using triphenylphosphine (PPh<sub>3</sub>) and aryl halides. This is the first work in which PPh<sub>3</sub> has been used as the starting material, and the reaction proceeds via the alkaline hydrolysis of quaternary phosphonium salts. The final work exhibits novel photocatalytic activity of <i>N</i>-heterocyclic carbenes (NHC) to activate aryl halides, form aryl radicals, and enable phosphonation. This method displays broad functional group tolerance under mild conditions and highlights its untapped synthetic utility as a photocatalyst.</p>

Page generated in 0.0726 seconds