Spelling suggestions: "subject:"cellulose nanofibers"" "subject:"cellulose nanaofibers""
1 |
Production of TEMPO-oxidized cellulose nanofibers from cotton stalks and its utilization in different industrial applicationsSoni, Bhawna 08 December 2017 (has links)
Cellulose nanofibers (CNFs) have established widespread attention in various industries with their potential applications. Production of CNFs from agricultural post harvesting wastes has several cost-effective and eco-friendly benefits. The objective of this research was to prepare four different types of CNFs from cotton stalks by different chemical treatments followed by ultra-sonication. CNFs via untreated bleached pulp, sulfuric acid hydrolysis, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl) oxy radical]-mediated oxidation process were produced. Physical and chemical properties of these CNFs were investigated by morphological (FE-SEM, AFM), structural (FTIR), and thermal gravimetric analysis (TGA). Developed TEMPO-oxidized cellulose nanofibers (TEMPO-CNFs) were brighter and higher in yields (>90%). It was the first time uniform and very small sized (3-15 nm diameter and 10-100 nm length) nanofibers were produced. In application purpose, TEMPO-CNFs were introduced into chitosan matrix (prepared from shrimp exoskeletons) for the development of bionanocomposite food packaging films and into chitin for hydrogels preparation in order to eliminate heavy metals from water bodies. Development of bionanocomposite films (chitosan/TEMPO-CNFs compositions) was an effective and complete green approach with enhanced mechanical and barrier properties. Also use of TEMPO-CNFs in this method makes it possible to produce flexible, transparent, and low cost food packaging films with good antimicrobial activity against Salmonella enterica, E. coli O157:H7, and Listeria monocytogenes. In a similar way, generation of recyclable biobased adsorbents (chitin/TEMPO-CNFs compositions) with superior adsorption capacity and high surface area were effectively used in lead (Pb2+) removal from aqueous solutions, thus provide new opportunities as economical and environmentally friendly green remediation.
|
2 |
Synthesis of functional inorganic nanofibers using cellulose nanofibers as templates / セルロースナノファイバーを鋳型に用いた機能性無機ナノファイバーの合成Gunji, Shunsuke 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20385号 / 工博第4322号 / 新制||工||1670(附属図書館) / 京都大学大学院工学研究科材料化学専攻 / (主査)教授 三浦 清貴, 教授 田中 勝久, 教授 木村 俊作 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
3 |
Engineering Cellulose Nanofibers For Better Performance as NanocompositesMiran Mavlan (6983801) 15 August 2019 (has links)
<p>In recent
decades there has been great interest to produce novel bio-based composites to
reduce carbon footprint without sacrificing the necessities that society
demands. To achieve a more sustainable future, research in cellulose
biopolymers has risen to the forefront. Impressive mechanical, thermal and
optical properties along with its abundant biomass has made nanocellulose (NC)
the subject of intense research in the area of electronics, drug delivery,
sensors, selective filters, and structural materials, to name a few. The
practical utility of any cellulose-based materials requires a more complete understanding
of how the fundamental structure affects final performance. This thesis
examines several avenues to obtain novel materials by considering processing
parameters and preparation methods for working with raw nanocellulose
materials, and mechanochemical approaches for surface grafting to obtain
modified CNs with improved dispersion in organic media. Lastly, the synergy
between the two studies and its impact on advanced materials and nanocomposites
is discussed.</p>
<p>The low cost and
wide availability of cellulose nanofibers (CNF), a refined form of cellulose
microfibrils, make these an ideal starting material for our studies. However,
the aggregated states of freeze-dried CNFs hinder its use as an additive for
reinforcing polymer blends or functional films. The use of <i>tert</i>-butyl alcohol (TBA) as a stabilizer in pharmaceutical drugs
has been well studied for its effectiveness in facilitating redissolution and
extending product shelf life. Lyophilization of aqueous CNF slurries treated
with various amounts of TBA produced a more porous material that could be
redispersed with superior colloidal stability relative to untreated
freeze-dried CNFs. Furthermore, CNFs lyophilized from aqueous TBA mixtures
could be subjected to mild mechanochemical reactions (horizontal ball milling)
to produce esterified nanofibers with high degrees of substitution (DS) and
good dispersibility profiles in organic solvents. This solventless technique
allowed for a variety of carboxylic acids to be grafted onto CNF surfaces.
Finally, investigations of new materials with technological utility have been
explored using networks of CNFs modified with oleic acid. These can be cast
into superhydrophobic (SHP) films having a hierarchical structure
characteristic of a self-similar material, with a wettability comparable to
that of the lotus leaf. The SHP surface can also be regenerated after surface
fouling or physical damage. </p>
|
4 |
Nanocompósitos de poliamida 6,6 reciclada reforçados com nanofibras de celulose para aplicação em peças automotivas / Nanocomposite of recycled polyamide 6,6 reinforced with cellulose nanofibers for application in automotive partsBenaducci, Daiane 15 January 2014 (has links)
A busca é cada vez maior por parte das indústrias para encontrar alternativas de uso para seus materiais de descarte. Considerando as vantagens da aplicação da poliamida 6,6 reciclada (PA66Rec), material de descarte da empresa Rhodia Poliamida e Especialidades Ltda, o principal objetivo do trabalho foi a obtenção e caracterização de nanocompósitos a partir desse polímero sintético. Este material possui elevada temperatura de fusão e por esse e outros motivos, como o fato de possuírem mesma polaridade, as nanofibras de celulose (NFC) tornaram-se excelentes candidatas como reforço para essa matriz de poliamida 6,6. As poliamidas 6,6 são amplamente utilizadas na indústria automobilística, porém apesar desse grande interesse tecnológico nas mesmas, poucos estudos de compósitos poliméricos poliamida 6,6/celulose foram publicados. A fim de comparar os resultados obtidos foram preparados também nanocompósitos com matriz de poliamida obtida a partir de resina virgem (PA66) reforçados com NFC. Neste trabalho as NFC foram dispersas em ácido fórmico e a essa suspensão a matriz polimérica foi solubilizada. Foi considerado um branco desse pré-processamento, sem NFC, para comparação. As amostras foram então processadas por extrusão e moldagem por injeção. As propriedades mecânicas, térmicas e morfológicas foram caracterizadas utilizando ensaio de tração, calorimetria exploratória diferencial (DSC), análise termogravimétrica (TG) e microscopia eletrônica de varredura (MEV). Os resultados de TG confirmaram a menor estabilidade térmica das amostras com NFC em relação as sem NFC. Os resultados de DSC das amostras obtidas com a PA66Rec indicaram que o pré-processamento e a adição de 1 e 2% em massa de NFC não modificaram significativamente as temperaturas de fusão e cristalização. O grau de cristalinidade da amostra com maior teor de NFC diminuiu, entretanto as imagens de MEV mostraram as NFC bem ancoradas na matriz e os resultados de ensaio mecânico revelaram que a adição de 1 e 2% de NFC levou a um aumento de 10% do módulo elástico, em média. Para as amostras obtidas com a PA66 a adição de NFC levou a um aumento do grau de cristalinidade de 16 para 23%, em média, justificando o aumento de 15% do módulo elástico encontrado no ensaio mecânico de tração. As imagens de MEV para todas as amostras revelaram a boa incorporação da NFC nas matrizes, bem como a boa dispersão das mesmas. Tanto o pré-processamento como a incorporação das NFC não prejudicou o módulo elástico e a resistência máxima à tração, podendo indicar uma alternativa de uso para poliamida 6,6 reciclada, dependendo da aplicação final do material. / The search by industry to find alternative uses for its materials disposal is increasing. Considering the advantages application of recycled polyamide 6,6 (PA66Rec), disposal material of Rhodia Polyamide and Specialities Ltd company, the main objective of the work was to obtain and characterize nanocomposites from this synthetic polymer. This material has a high melting temperature and for this and other reasons, like the fact that they have the same polarity, the cellulose nanofibers (CNF) have become excellent candidates as reinforcement to the matrix polyamide 6,6. The polyamides 6,6 are widely used in the automotive industry, but despite this great technological interest in them, few studies of polymer composite polyamide 6,6/cellulose were published. In order to compare the results obtained nanocomposites were also prepared with polyamide matrix obtained from virgin resin (PA66) reinforced with NFC. In this work the CNF were dispersed in formic acid and the polymer matrix was solubilized in this suspension. It was considered a control sample without CNF for this preprocessing for comparison. Then, the samples were processed by extrusion and injection molding. The mechanical, thermal and morphological properties were characterized using tensile test, differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The TG results confirmed the lower thermal stability of the samples with CNF compared with those without CNF. The DSC results obtained from the PA66Rec samples indicated that preprocessing and the addition of 1 and 2% mass fraction of CNF not significantly changes in melt and crystallization temperatures. The degree of crystallinity of the sample with a higher content of NFC decreased, however the SEM images showed the CNF well anchored in the matrix and the results of mechanical test showed that the addition of 1 and 2% NFC led to a 10% increase in the elastic modulus. For the samples obtained with PA66 the addition of CNF led to an increase in the degree of crystallinity of 16 to 23%, on average, justifying the 15% increase in the elastic modulus found in mechanical tests. The SEM images for all the samples showed good incorporation in the matrix of CNF and the good dispersion thereof. Any preprocessing such as the incorporation of NFC did not impair the elastic modulus and maximum tensile strength, and may indicate an alternative use for recycled polyamide 6,6, depending on the final application of the material.
|
5 |
Preparação de placas rígidas de polpa celulósica e de nanofibras de celulose com polímeros acrílicos / Preparation and characterization of rigid panels of wood cellulose pulp and nanocellulose with acrilic polymersChiromito, Emanoele Maria Santos 28 July 2016 (has links)
No presente trabalho, foram preparados painéis rígidos compostos de polpa celulósica e nanofibras de celulose (NFC), utilizando como materiais aglomerantes o poli (metacrilato de metila) (PMMA) e uma resina acrílica comercial, empregados em suspensões aquosas do material celulósico e emulsões dos polímeros aglomerantes. Foi desenvolvido um novo método para a preparação dos materiais compósitos baseados em um processo de co-precipitação, onde o reforço de fibras de celulose e o polímero em emulsão são coagulados e isolados da fase aquosa. Foram investigadas misturas de resina/fibra contendo 25%, 50% e 75% de fibras em massa. O grande desafio encontrado foi a obtenção de dispersões homogêneas das fibras nas matrizes acrílicas, uma vez que a natureza hidrofílica da celulose em relação a natureza hidrofóbica das matrizes geralmente leva a separação entre os componentes e a formação de materiais heterogêneos. O processo estudado neste trabalho, conduziu à formação de placas espessas e homogêneas que foram moldadas por prensagem à quente. Os materiais foram caracterizados por meio de ensaios de espectroscopia no infravermelho com transformada de Fourier (FTIR), análise termogravimétrica (TGA), ensaio dinâmico mecânico (DMA), ensaio de tração, absorção de água e microscopia eletrônica de varredura (MEV). As micrografias obtidas por MEV mostraram uma boa dispersão e adesão interfacial das NFC com os materiais acrílicos. Os ensaios de DMA e ensaios de tração evidenciaram o efeito de reforço superior NFC em relação a polpa celulósica. O comportamento dos compósitos obtidos com as NFC foi muito superior do que comportamento dos painéis obtidos com a polpa de celulose. O método desenvolvido para a produção de placas de polímeros acrílicos com altos teores de fibras de celulose se mostrou eficaz, sendo demonstrado o potencial das NFC como material de reforço. / In this work, there were prepared rigid panels of poly (methyl methacrylate) (PMMA) and a commercial acrylic resin reinforced with wood pulp and cellulose nanofibers (NFC). Wood pulp and cellulose nanofibers were used from its aqueous suspensions and the thermoplastic polymers used as emulsions. A new method for the preparation of composite materials based on a co-precipitation in which the reinforcement fibers of cellulose and polymer emulsion were coagulated and isolated from the aqueous phase has been developed. Thus, mixtures of resin/fiber containing 25%, 50% and 75% by weight fibers have been investigated. The challenge found to obtain homogenous dispersion of fibers in an acrylic resin matrix, since the hydrophilic nature of the cellulose compared to hydrophobic nature of matrices usually leads to separation of the components and the formation of heterogeneous materials. The process studied in this work led to the formation of thick and homogeneous composites in which were molded by hot pressing. The materials was characterized by Fourier transform infrared spectroscopy (FTIR) thermogravimetric analysis (TGA), dynamical mechanical analysis (DMA), tensile testing, water absorption and scanning electron microscopy (SEM). The SEM micrographs showed good dispersion and interfacial adhesion of NFC with acrylic materials. DMA tests and tensile tests showed higher reinforcing effect NFC in relation to pulp. The method developed for the production of acrylic polymers panels with high cellulose fibers content is effective, being demonstrated the potential of NFC as reinforcing material. The behavior of the panels obtained with NFC was very behavior of the composites obtained from the wood pulp cellulose.
|
6 |
Bio-inspired cellulose nanocomposites and foams based on starch matrixSvagan, Anna January 2008 (has links)
In 2007 the production of expanded polystyrene (EPS) in the world was over 4 million tonnes and is expected to grow at 6 percent per year. With the increased concern about environmental protection, alternative biodegradable materials from renewable resources are of interest. The present doctoral thesis work successfully demonstrates that starch-based foams with mechanical properties similar to EPS can be obtained by reinforcing the cell-walls in the foams with cellulose nanofibers (MFC). High cellulose nanofiber content nanocomposites with a highly plasticized (50/50) glycerol-amylopectin starch matrix are successfully prepared by solvent-casting due to the high compatibility between starch and MFC. At 70 wt% MFC, the nanocomposites show a remarkable combination of high tensile strength, modulus and strain to failure, and consequently very high work to fracture. The interesting combination of properties are due to good dispersion of nanofibers, the MFC network, nanofiber and matrix properties and favorable nanofiber-matrix interaction. The moisture sorption kinetics (30% RH) in glycerol plasticized and pure amylopectin film reinforced with cellulose nanofibers must be modeled using a moisture concentration-dependent diffusivity in most cases. The presence of cellulose nanofibers has a strong reducing effect on the moisture diffusivity. The decrease in zero-concentration diffusivity with increasing nanofiber content could be due to geometrical impedance, strong starch-MFC molecular interaction and constrained swelling due to the cellulose nanofiber network present. Novel biomimetic starch-based nanocomposite foams with MFC contents up to 40 wt% are successfully prepared by freeze-drying. The hierarchically structured nanocomposite foams show significant increase in mechanical properties in compression compared to neat starch foam. Still, better control of the cell structure could further improve the mechanical properties. The effect of cell wall composition, freeze-drying temperature and freezing temperature on the resulting cell structure are therefore investigated. The freeze-drying temperature is critical in order to avoid cell structure collapse. By changing the starch content, the cell size, anisotropy ratio and ratio between open and closed cells can be altered. A decrease in freezing temperature decreases the cell size and increases the anisotropy ratio. Finally, mechanical properties obtained in compression for a 30 wt% MFC foam prepared by freeze-drying demonstrates comparable properties (Young's modulus and yield strength) to expanded polystyrene at 50% RH and similar relative density. This is due to the reinforcing cellulose nanofiber network within the cell walls. / QC 20100913
|
7 |
Preparação de placas rígidas de polpa celulósica e de nanofibras de celulose com polímeros acrílicos / Preparation and characterization of rigid panels of wood cellulose pulp and nanocellulose with acrilic polymersEmanoele Maria Santos Chiromito 28 July 2016 (has links)
No presente trabalho, foram preparados painéis rígidos compostos de polpa celulósica e nanofibras de celulose (NFC), utilizando como materiais aglomerantes o poli (metacrilato de metila) (PMMA) e uma resina acrílica comercial, empregados em suspensões aquosas do material celulósico e emulsões dos polímeros aglomerantes. Foi desenvolvido um novo método para a preparação dos materiais compósitos baseados em um processo de co-precipitação, onde o reforço de fibras de celulose e o polímero em emulsão são coagulados e isolados da fase aquosa. Foram investigadas misturas de resina/fibra contendo 25%, 50% e 75% de fibras em massa. O grande desafio encontrado foi a obtenção de dispersões homogêneas das fibras nas matrizes acrílicas, uma vez que a natureza hidrofílica da celulose em relação a natureza hidrofóbica das matrizes geralmente leva a separação entre os componentes e a formação de materiais heterogêneos. O processo estudado neste trabalho, conduziu à formação de placas espessas e homogêneas que foram moldadas por prensagem à quente. Os materiais foram caracterizados por meio de ensaios de espectroscopia no infravermelho com transformada de Fourier (FTIR), análise termogravimétrica (TGA), ensaio dinâmico mecânico (DMA), ensaio de tração, absorção de água e microscopia eletrônica de varredura (MEV). As micrografias obtidas por MEV mostraram uma boa dispersão e adesão interfacial das NFC com os materiais acrílicos. Os ensaios de DMA e ensaios de tração evidenciaram o efeito de reforço superior NFC em relação a polpa celulósica. O comportamento dos compósitos obtidos com as NFC foi muito superior do que comportamento dos painéis obtidos com a polpa de celulose. O método desenvolvido para a produção de placas de polímeros acrílicos com altos teores de fibras de celulose se mostrou eficaz, sendo demonstrado o potencial das NFC como material de reforço. / In this work, there were prepared rigid panels of poly (methyl methacrylate) (PMMA) and a commercial acrylic resin reinforced with wood pulp and cellulose nanofibers (NFC). Wood pulp and cellulose nanofibers were used from its aqueous suspensions and the thermoplastic polymers used as emulsions. A new method for the preparation of composite materials based on a co-precipitation in which the reinforcement fibers of cellulose and polymer emulsion were coagulated and isolated from the aqueous phase has been developed. Thus, mixtures of resin/fiber containing 25%, 50% and 75% by weight fibers have been investigated. The challenge found to obtain homogenous dispersion of fibers in an acrylic resin matrix, since the hydrophilic nature of the cellulose compared to hydrophobic nature of matrices usually leads to separation of the components and the formation of heterogeneous materials. The process studied in this work led to the formation of thick and homogeneous composites in which were molded by hot pressing. The materials was characterized by Fourier transform infrared spectroscopy (FTIR) thermogravimetric analysis (TGA), dynamical mechanical analysis (DMA), tensile testing, water absorption and scanning electron microscopy (SEM). The SEM micrographs showed good dispersion and interfacial adhesion of NFC with acrylic materials. DMA tests and tensile tests showed higher reinforcing effect NFC in relation to pulp. The method developed for the production of acrylic polymers panels with high cellulose fibers content is effective, being demonstrated the potential of NFC as reinforcing material. The behavior of the panels obtained with NFC was very behavior of the composites obtained from the wood pulp cellulose.
|
8 |
Nanocompósitos de poliamida 6,6 reciclada reforçados com nanofibras de celulose para aplicação em peças automotivas / Nanocomposite of recycled polyamide 6,6 reinforced with cellulose nanofibers for application in automotive partsDaiane Benaducci 15 January 2014 (has links)
A busca é cada vez maior por parte das indústrias para encontrar alternativas de uso para seus materiais de descarte. Considerando as vantagens da aplicação da poliamida 6,6 reciclada (PA66Rec), material de descarte da empresa Rhodia Poliamida e Especialidades Ltda, o principal objetivo do trabalho foi a obtenção e caracterização de nanocompósitos a partir desse polímero sintético. Este material possui elevada temperatura de fusão e por esse e outros motivos, como o fato de possuírem mesma polaridade, as nanofibras de celulose (NFC) tornaram-se excelentes candidatas como reforço para essa matriz de poliamida 6,6. As poliamidas 6,6 são amplamente utilizadas na indústria automobilística, porém apesar desse grande interesse tecnológico nas mesmas, poucos estudos de compósitos poliméricos poliamida 6,6/celulose foram publicados. A fim de comparar os resultados obtidos foram preparados também nanocompósitos com matriz de poliamida obtida a partir de resina virgem (PA66) reforçados com NFC. Neste trabalho as NFC foram dispersas em ácido fórmico e a essa suspensão a matriz polimérica foi solubilizada. Foi considerado um branco desse pré-processamento, sem NFC, para comparação. As amostras foram então processadas por extrusão e moldagem por injeção. As propriedades mecânicas, térmicas e morfológicas foram caracterizadas utilizando ensaio de tração, calorimetria exploratória diferencial (DSC), análise termogravimétrica (TG) e microscopia eletrônica de varredura (MEV). Os resultados de TG confirmaram a menor estabilidade térmica das amostras com NFC em relação as sem NFC. Os resultados de DSC das amostras obtidas com a PA66Rec indicaram que o pré-processamento e a adição de 1 e 2% em massa de NFC não modificaram significativamente as temperaturas de fusão e cristalização. O grau de cristalinidade da amostra com maior teor de NFC diminuiu, entretanto as imagens de MEV mostraram as NFC bem ancoradas na matriz e os resultados de ensaio mecânico revelaram que a adição de 1 e 2% de NFC levou a um aumento de 10% do módulo elástico, em média. Para as amostras obtidas com a PA66 a adição de NFC levou a um aumento do grau de cristalinidade de 16 para 23%, em média, justificando o aumento de 15% do módulo elástico encontrado no ensaio mecânico de tração. As imagens de MEV para todas as amostras revelaram a boa incorporação da NFC nas matrizes, bem como a boa dispersão das mesmas. Tanto o pré-processamento como a incorporação das NFC não prejudicou o módulo elástico e a resistência máxima à tração, podendo indicar uma alternativa de uso para poliamida 6,6 reciclada, dependendo da aplicação final do material. / The search by industry to find alternative uses for its materials disposal is increasing. Considering the advantages application of recycled polyamide 6,6 (PA66Rec), disposal material of Rhodia Polyamide and Specialities Ltd company, the main objective of the work was to obtain and characterize nanocomposites from this synthetic polymer. This material has a high melting temperature and for this and other reasons, like the fact that they have the same polarity, the cellulose nanofibers (CNF) have become excellent candidates as reinforcement to the matrix polyamide 6,6. The polyamides 6,6 are widely used in the automotive industry, but despite this great technological interest in them, few studies of polymer composite polyamide 6,6/cellulose were published. In order to compare the results obtained nanocomposites were also prepared with polyamide matrix obtained from virgin resin (PA66) reinforced with NFC. In this work the CNF were dispersed in formic acid and the polymer matrix was solubilized in this suspension. It was considered a control sample without CNF for this preprocessing for comparison. Then, the samples were processed by extrusion and injection molding. The mechanical, thermal and morphological properties were characterized using tensile test, differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The TG results confirmed the lower thermal stability of the samples with CNF compared with those without CNF. The DSC results obtained from the PA66Rec samples indicated that preprocessing and the addition of 1 and 2% mass fraction of CNF not significantly changes in melt and crystallization temperatures. The degree of crystallinity of the sample with a higher content of NFC decreased, however the SEM images showed the CNF well anchored in the matrix and the results of mechanical test showed that the addition of 1 and 2% NFC led to a 10% increase in the elastic modulus. For the samples obtained with PA66 the addition of CNF led to an increase in the degree of crystallinity of 16 to 23%, on average, justifying the 15% increase in the elastic modulus found in mechanical tests. The SEM images for all the samples showed good incorporation in the matrix of CNF and the good dispersion thereof. Any preprocessing such as the incorporation of NFC did not impair the elastic modulus and maximum tensile strength, and may indicate an alternative use for recycled polyamide 6,6, depending on the final application of the material.
|
9 |
Produção de nanofibras de celulose por hidrólise enzimática / Cellulose nanofibers produced by enzymatic hydrolysisTibolla, Heloisa, 1989- 25 August 2018 (has links)
Orientadores: Florencia Cecilia Menegalli, Franciele Maria Pelissari Molina / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-25T00:00:43Z (GMT). No. of bitstreams: 1
Tibolla_Heloisa_M.pdf: 30429584 bytes, checksum: 643238deef75b3825c3b74575e11f722 (MD5)
Previous issue date: 2014 / Resumo: A presente dissertação objetivou estudar o potencial da técnica de hidrólise enzimática na produção de nanofibras de celulose (NFCs) a partir da casca de bananas verdes da variedade "Terra" (Musa paradisiaca). Na primeira etapa do trabalho, o farelo da casca da banana foi caracterizado com base em suas propriedades físico-químicas, funcional e estrutural. Na segunda etapa, testou-se combinações de tratamentos (químico, hidrólise enzimática e tratamento mecânico) para isolar nanofibras de celulose. Na terceira etapa do trabalho avaliou-se a influência das condições de processo (pH, temperatura, concentração de enzima e concentração de substrato) na hidrólise enzimática com xilanase. Os experimentos foram realizados empregando-se um planejamento fatorial fracionado 24-1 com três pontos centrais. As NFCs foram caracterizadas quanto ao diâmetro, distribuição do comprimento, potencial zeta, grupos funcionais por FTIR, cristalinidade por difração de raios-X (DRX), concentração de NFCs produzidas e característica morfológica por microscopia eletrônica de transmissão (MET). A quarta e última etapa, foi realizada com o intuito de estudar a adição de mais uma hidrólise enzimática, usando o complexo celulolítico, na produção de NFCs. O farelo apresentou uma estrutura irregular, com teor de celulose de 7,5% e índice de cristalinidade de 15%. A presença de componentes amorfos (hemicelulose e lignina) foi constatada no farelo através da análise de grupos funcionais. Como resultados da segunda etapa, foram obtidas partículas de celulose em dimensões micro e nanométricas, evidenciando que o tratamento com potencial para produzir NFCs foi o branqueamento do farelo com KOH 5%, hidrólise enzimática com xilanase e celulase e após, desintegração das fibrilas com homogeneização mecânica, obtendo-se partículas com diâmetro médio de 14,9 nm. Na terceira etapa da pesquisa, as imagens da microscopia confirmaram que o tratamento com a enzima xilanase foi eficaz no isolamento de fibras de celulose na escala nanométrica. O diâmetro médio apresentado pelas mesmas foi de 8,8 nm. Em água neutra, as suspensões de nanofibras apresentaram potencial zeta alto e negativo, na faixa de -22,8 e -29,5, o que minimiza as interações que levam à formação de agregados de nanofibras, colaborando para a formação de uma suspensão coloidal mais estável. O índice de cristalinidade do farelo foi de 15,0% e das nanofibras variou entre 48,5 e 61,0%, demonstrando que o tratamento utilizado promoveu a remoção das frações amorfas. Os resultados obtidos a partir do planejamento fatorial mostrou que a enzima xilanase opera sobre o isolamento do NFCS em uma ampla faixa de condições do processo, dentro do intervalo de estudo. Os resultados encontrados na quarta etapa demonstraram que as cadeias de celulose das nanofibras foram reduzidas à monômeros de açúcares, principalmente glicose, visto que o complexo celulolítico atua de forma sinérgica na degradação total da celulose. O farelo da casca de banana é um resíduo agroindustrial com potencial uso para produção de nanopartículas. A hidrólise enzimática com xilanase mostrou-se ser uma técnica promissora na produção de nanofibras de celulose com alto desempenho como material de reforço em compósitos, sendo desnecessária a realização de um tratamento com a enzima celulase / Abstract: This dissertation aimed to study the potential use of the technique of enzymatic hydrolysis in the production of cellulose nanofibers (CNFs) from peel unripe bananas of the variety "Terra" (Musa paradisiaca). In the first stage of the work, the bran of the peel banana was characterized on the basis of their physicochemical, structural and functional properties. In the second stage, to isolate cellulose nanofibers, we tested combination of treatments (chemical, enzymatic hydrolysis and mechanical treatment). In the third stage of the study was evaluate the influence of process conditions (pH, temperature, enzyme concentration and substrate concentration) on enzymatic hydrolysis with xylanase. The experiments were performed employing a fractional factorial design 24-1 with three center points. The NFCS were characterized by diameter, length distribution, zeta potential, functional groups by FTIR, crystallinity by X-rays diffraction (XRD) and morphology features by transmission electron microscopy (TEM). The fourth and final stage was performed in order to study the efficiency of further enzymatic hydrolysis using cellulolytic complex to produce NFCS. The bran presented an irregular structure, with amount of cellulose of 7.5% and the crystallinity index of 15%. The presence of amorphous components (hemicellulose and lignin) was noted in the bran by functional groups analysis. As a result of the second stage, cellulose particles in micro and nanometric dimensions were obtained, indicating that the treatment with the potential to produce NFCS was bleaching bran with KOH 5%, enzymatic hydrolysis with cellulase and xylanase and after mechanical homogenization for disintegration of the fibrils, yielding particles with an average diameter of 14.9 nm. In the third step of research, the images of the microscope confirmed that the treatment with enzyme xylanase was effective in the isolation of cellulose fibers in the nanoscale. The average diameter presented by the same was 8.8 nm. In neutral water, suspensions of nanofibers showed high and negative zeta potential in the range of -22.8 and -29.5, which minimizes the interactions that lead to the formation of aggregates of nanofibers, contributing to the formation of a colloidal suspension more stable. The crystallinity index of the bran was 15.0% and the nanofibers was between 48.5 and 61.0%, demonstrating that the treatment promoted the removal of the amorphous fractions. Results obtained from the factorial design showed that xylanase enzyme operates on the isolation of the NFCS in a wide range of process conditions, within the evaluated range. The results found in the fourth step showed that the cellulose chains of the nanofibers were reduced to monomers sugars, especially glucose, since the cellulolytic complex acts synergistically in overall degradation of cellulose. The bran banana peel is an agricultural waste with potential use for production of nanoparticles. The enzymatic hydrolysis with xylanase was shown to be a promising technique for producing cellulose nanofibers with high performance as reinforcing material in composites, due to its ability to make it unnecessarily performing a treatment with cellulase enzyme, which was detrimental to the formation of NFCS / Mestrado / Engenharia de Alimentos / Mestra em Engenharia de Alimentos
|
10 |
Functionalization, Characterization and Applications of Oxidized Nanocellulose DerivativesRuan, Chang-Qing January 2017 (has links)
Cellulose, a sustainable raw material derived from nature, can be used for various applications following its functionalization and oxidation. Nanocellulose, inheriting the properties of cellulose, can offer new properties due to nanoscale effects, in terms of high specific surface area and porosity. The oxidation of cellulose can provide more active sites on the cellulose chains, improving its functionalization and broadening applications. Two kinds of oxidation and their corresponding applications are described in this thesis: periodate oxidation and Oxone® oxidation. 2,3-dialdehyde cellulose (DAC) beads were prepared from Cladophora nanocellulose via periodate oxidation, and were further modified with amines via reductive amination. Several diamines were selected as possible crosslinkers to produce porous DAC beads, which showed higher porosity, stability in alkaline solution and enhanced thermal stability. After functionalization of DAC beads with L-cysteine (DAC-LC), thiol, amine and carboxyl groups were introduced into the DAC beads, endowing the DAC-LC beads with high adsorption capacity for palladium. The synthesized DAC-LC beads were characterized with SEM, FTIR, XPS, TGA, BET and XRD and the palladium adsorption process was investigated. Chitosan was employed as a crosslinker in functionalization of DAC beads (DAC-CS). The conditions for the synthesis of DAC-CS beads were screened and verifying the stability of the beads in alkaline solution. The DAC-CS beads produced were investigated using SEM, FTIR, XPS, TGA and BET, and the adsorption and desorption capacity of Congo red was studied, indicating DAC-CS beads have potential as sorbent. Oxone oxidation of cellulose is a novel one-pot oxidation method in which mainly the hydroxyl groups on C6 are oxidized to produce carboxylic acid groups on the cellulose chains. To increase the efficiency of Oxone oxidation, several reaction parameters were studied. Cellulose pulp and Cladophora nanocellulose were chosen as prototypes to investigate the effects of oxidation, and the physicochemical properties of the oxidized products were characterized. Cellulose pulp, pretreated with Oxone oxidation, was disintegrated by homogenization to prepare cellulose nanofibers (CNF). The effect of pretreatment on the preparation of CNF was studied, and the results indicated that Oxone oxidation was efficient in the production of CNF.
|
Page generated in 0.0486 seconds