Spelling suggestions: "subject:"arganic cationic"" "subject:"0rganic cationic""
1 |
Forward osmosis using organic cationic draw solutions for water recoveryHamad, Mohammed J.A. January 2017 (has links)
Forward Osmosis (FO) is an emerging technology which has potential to operate with minimum energy input. High performance of FO systems depend on the availability of a suitable Draw Solution. Different types of Draw Solutions have been proposed, however; choosing a suitable one is still a developing area within the FO field. There is an urgent need to explore new materials in order to develop an efficient FO system. The current study aims at investigating the performance of three Draw Solutions namely, L-Alanine, DADMAC and PolyDADMAC as osmotic agents for FO. These organic cationic solutions can be used as extraction agents of water from poorer quality organic solutes such as fumaric acid solution produced in a continuous flow microbial fermentation process. The performance of the three Draw Solutions was evaluated by measuring the water flux and reverse solute diffusion at different concentrations. The viability of reconcentration of the diluted Draw Solutions was also investigated using Nanofiltration system. The performance and the efficiency of the Draw Solutions were studied via two separated bench scale systems of FO and Nanofiltration. Both Cellulose Triacetate (CTA) and Thin Film Composite (TFC) aquaporin protein FO membranes were employed under different orientations in FO set up operated for 24 hours or longer. In this study, NF90 membrane was used for reconcentration the Draw Solutions. A series of experiments were conducted to obtain the best water flux and reverse solute diffusion under various influencing operating conditions. The experiments were designed to achieve three objectives, i.e. (i) optimum operating conditions for FO system, (ii) optimum operating conditions for the reconcentration system, and (iii) implementation of the optimum operating conditions of the FO system for water recovery from a fumaric acid solution produced by a simulated industrial fermentation process. In the initial stage, L-Alanine Draw Solution demonstrated that it was the most viable agent for FO. It was established that L-Alanine Solution at 0.085 g/mL concentration achieved the highest initial water flux and the lowest reverse solute diffusion through both CTA and TFC aquaporin protein FO membranes. In the second stage, a Nanofiltration system was proven to be effective in the reconcentration of the diluted L-Alanine Draw Solution. The average rejection of L-Alanine ions achieved by NF90 membrane was 96.00%. Drawing on the previous results, the third stage was used to investigate the viability of the FO system in water recovery from fumaric acid solution produced by continuous microbial fermentation process using L-Alanine as a Draw Solution. The reduction of water content of the fumaric acid solution made it to concentrate by 26.00% and 19.80% in 32_ and 17_, respectively. Consequently, FO technology is an effective way to concentrate a fumaric acid solution produced by continuous microbial fermentation process. Based on the results, it is recommended that LAlanine should be proposed in the FO process according to its reliability and effectiveness as a viable draw agent. TFC aquaporin protein membrane is also recommended to be used in recover the water from fumaric acid solution produced by fermentation processes. Further studies should be done to investigate the viability of FO in water recovery from advanced application such as downstream bioprocessing. / Dissertation (MEng)--University of Pretoria, 2017. / Chemical Engineering / MEng / Unrestricted
|
Page generated in 0.0998 seconds