• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 35
  • 35
  • 35
  • 35
  • 14
  • 13
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Development of analytical methods for the determination of volatile fatty acids in wastewater

Mkhize, Nontando T. 09 December 2013 (has links)
M.Sc. (Chemistry) / Volatile fatty acids (VFAs) play a pivotal in the process of nutrient removal by biological processes particularly the enhanced biological nutrient removal process with a side-stream elutriation process using activated sludge. These acids are said to act as intermediates which provide feed for the organisms in a biological phosphorus and nitrogen removal (BNPR) system, such as phosphorus-accumulating organisms (PAOs) and nitrate-accumulating bacteria (NABs). In wastewater treatment plants, VFAs play a vital role as intermediate organic compounds during the fermentation processes which generate methane gas and when present at elevated levels they are known to cause microbial stress, acidification as well as the poor performance of anaerobic digesters. For these reasons, the routine monitoring of VFA levels in wastewater treatment plants is crucial as they will act as indicators of the efficiency and optimal operation performance of the anaerobic digesters. Normally the VFAs that are commonly produced during the anaerobic fermentation process include acetic acid, propionic acid, butyric acid, and valeric acid and of these, acetic and propionic acids form the major VFAs that are generated, thus the yields of these two compounds provide a useful measure of the anaerobic digester performance. For example, the ratio of propionic acid to acetic acid is always used as an indicator of digester imbalance while high concentrations of acetic acid (e.g. > 800 mg/ℓ) or a propionic acid to acetic acid ratio greater than 1.4 is an indication of digester failure. This study was thus aimed at establishing the complete VFA profile at the Johannesburg Water (JW) Northern Works Wastewater Treatment Plant in Johannesburg, South Africa, by developing analytical methods to quantify the VFAs in the wastewater treatment plant. In addition, the level of VFAs quantified was used to evaluate the efficiency of the fermentation treatment process in wastewater treatment systems in order to give an indication of the bacterial activities in the systems; to determine the ratios of the VFAs, especially the propionic acid to acetic acid ratio, to establish the performance and efficiency of various wastewater treatment plants; and to determine whether there is any imbalance in the anaerobic digesters. Two analytical methods for the determination of VFAs were successfully developed and applied to real wastewater samples. The first method developed was a liquid-liquid extraction method using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS. The method involved two extracting solvents, namely dichloromethane (DCM) and methyl-tert-butyl ether (MTBE). The extraction capacity of these two solvents was compared. The second method successfully developed and optimised headspace-solid phase microextraction (HS-SPME) using GC-TOF-MS. The microextraction fibre used was a polydimethylsiloxane (PDMS) fibre. Studies to validate the developed methods were also carried out by calculating the limit of detection (LOD) and limit of quantification (LOQ). Ratios of propionic acid to acetic acids were determined as well as the concentrations of acetic acid for both developed methods in order to evaluate the performance and efficiency of the treatment process. The results of the study show that the extraction procedure using solvents DCM and MTBE showed that exhaustive extraction was achieved by MTBE. Higher concentrations of acetic acid and propionic acid were obtained by MTBE. The overall fermentation performance for all three units in the period when the samples were collected, which was measured by the ratio of propionic to acetic acid was good since the ratio did not exceed 1.4. The acetic acid concentration in mg/ℓ was < 800 mg/ℓ for all units thus it can be said that the reactor balance was maintained for the period studied. The method LOD ranged from 0.034 mg/ℓ to 0.21 mg/ℓ and the method LOQ ranged from 0.11 mg/ℓ to 0.70 mg/ℓ. Optimisation of extraction parameters was achieved for headspace solid-phase microextraction using the PDMS fibre method. The extraction method was conducted for 60 min using a sample volume of 4 mℓ and the amount of sodium salt added was 1.50 g. The desorption temperature and time was 210ºC and 5 min, respectively. The LOD values ranged from 0.079 to 2.07. The PDMS fibre was found to be suitable for extracting higher carbon chain fatty acids as compared to lower carbon chain fatty acids. The plant performance for the period studied was on par as indicated by ratios of propionic acid to acetic acid which all fell below 1.4. There were no digester failures for the period studied. The acetic acid concentration in mg/ℓ was < 800 mg/ℓ for all 3 units.
22

Internal residues of the narcotic organic chemicals in the Cladoceran, Daphnia magna

Pawlisz, Andrew V. January 1993 (has links)
No description available.
23

Trace organic pollution in the indoor environment

Poon, Tim-leung., 潘添良. January 1993 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
24

EVALUATION OF AIR QUALITY USING AN ANALYTICAL METHOD FOR TOXIC ORGANIC VAPORS IN INDUSTRIAL EMISSIONS.

Broach, Rhonda Lee. January 1982 (has links)
No description available.
25

Pyrolysis of chlorinated organic chemicals.

Pillay, Kleantha. January 2001 (has links)
At present, South Africa has inadequate technology to destroy its hazardous waste, with approximately 18000 litres of chlorinated hazardous waste stored in this country. Approximately 800 tons of banned or obsolete chemicals are to be sent to Pontypool. Wales, for incineration, at a considerable cost. Because of the toxic nature of chlorinated waste and their long-term effects on the environment , a sustainable method of dealing with this type of waste is essential. Gas phase destruction of methylene chloride, trichlorobenzene and lindane by pyrolysis (i.e. heating in the absence of oxygen) was attempted. Destruction was effected by high temperature thermal degradation of molecules into free radicals. These radicals then combine to form hydrogen chloride and carbon as major products. This method was chosen so as to eliminate the possible formation of highly toxic oxygenated derivatives such as polychlorinated dibenzofurans and dibenzodioxins that can be formed during incineration if strict control is not excercised. The reactor assembly was built in the Department of Chemical Engineering at the University of Natal. 11 incorporates aspects of many different previously designed reactors, as discussed in the text. Heat for the reactions was supplied by induction. A high frequency induction unit supplied current to a copper coil. The resulting magnetic field induced current to flow in a susceptor housed within the copper coil. The susceptor in this case was a graphite tube, which served as both the heating element and the thermal radiation source, in addition to forming the walls of the reaction zone. Up and down stream processes were designed and experiments were carried out in which reaction temperatures (348-1400°C) and residence times (1.3-5.6 seconds) were varied. Destruction efficiencies of 100% and 99.99% were obtained for methylene chloride and trichlorobenzene respectively, with inert argon used as the carrier gas. These destruction efficiencies comply with the 99.99% stipulated by the United States Conservation and Recovery Act. A cause for concern was the formation of chlorinated benzenes and naphthalenes. Destruction of lindane proved unsuccessful due to limitations in the vapourisation and feed system and will have to be investigated further. The method of induction heating was evaluated to be 98.9% thermally efficient. Raw material and utility consumption per ton of waste destroyed by the pyrolysis process was compared to values for incineration as well as the plasma arc and catalytic extraction processes. Consumption for pyrolysis compares favourably with all three processes and suggests that the process could be competitive. Claims to the success of the technology on a wide scale are limited by the small number of compounds that were successfully pyrolysed. Results do however indicate much promise for this technology to be used as a fi nal chlorinated waste destruction unit on an existing process. Modifications to the existing reactor to improve product recovery and analys is will allow for temperature and residence time optimisation for a variety of wastes. Additional in strumentation and process control will allow for kinetic studies to be undertaken in future. This project should be considered as the first step in an ongoing series of research and subsequent improvements to the technology presented here. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2001.
26

Analysis and control of organic vapours in air and determination of metals and toxic elements in fish samples by differential pulsevoltammetry and atomic absorption spectrophotometry

曾志堅, Tsang, Chi-kin. January 1991 (has links)
published_or_final_version / Chemistry / Master / Master of Philosophy
27

Assessing the Role of Mobile Device Applications as an Educational Tool for Increasing Knowledge and Awareness of Volatile Organic Compound Exposure

Ardouin-Guerrier, Mary-Andree M. January 2021 (has links)
Exposure to volatile organic compounds (VOCs) has critical health implications for developing fetuses and subsequently for infants and young children. Research has suggested that this ambient air pollutant can be found indoors in quantities that may be hazardous to human health. In low-income neighborhoods in New York City such as northern Manhattan and the South Bronx, where there are disproportionately high rates of asthma and asthma-related hospitalizations, high rates of indoor exposure to VOCs persist. Simultaneously, as mobile devices expand, applications on mobile devices may be used to educate parents of children who reside in these geographic regions about indoor VOC emission sources and subsequently how to reduce exposure.Therefore, this study sought to assess the role of mobile device applications in reducing household VOCs by assessing the feasibility of existing health applications on both Apple and Android OS mobile devices without the use of a household air monitoring unit. An online survey assessed awareness of VOCs and identified knowledge of both emission sources and reduction methods of household VOCs among a sample of (N = 57) parents/guardians residing in the Northern Manhattan and Southern Bronx regions with children under the age of 5. A series of focus groups were conducted among a subset of participants to assess the adaptability of a mobile application prototype that specifically targets the reduction of VOCs. Lastly, a preliminary mobile device application mockup was created with potential features. The key findings of this study included the following: (a) the author identified no existing mobile device applications that could be utilized as a method for VOC reduction without the use of a physical in-home air monitor; (b) while parents had some baseline awareness of VOCs, there were gaps within their knowledge of VOCs, particularly with emission sources; (c) the feasibility of this proposed application as a potential source of intervention for indoor VOC mitigation was apparent through parent willingness to explore its possible use, while providing ample recommendations for optimal mobile device application design; and (d) the exploratory mockup of the proposed mobile device application was generated with suggested features.
28

Perfluorooctane acid (PFOA) and perfluorooctane sulfonate (PFOS) in the Plankenburg (Stellenbosch) and Diep (Milnerton) Rivers, and potential remediation using vitis vinifera leaf litter

Fagbayigbo, Bamidele Oladapo January 2017 (has links)
Thesis (DTech (Environmental Health))--Cape Peninsula University of Technology, 2017. / This study represents the first monitoring campaign to assess the seasonal trend of nine perfluorinated compounds (PFCs) in surface water and sediment from the Plankenburg and Diep Rivers in the Western Cape, South Africa. An analytical protocol was developed and validated for qualitative and quantitative routine determination of nine perfluorinated compounds (PFCs), in water and sediment samples using Ultra performance liquid chromatography-mass spectrometry quadrupole time of flight (UPLC-QTOF-MS). This method was applied to determine levels of PFOA and PFOS in environmental samples. Samples were collected along the Diep (Milnerton) and Plankenburg (Stellenbosch) Rivers respectively. Samples were pre-treated, cleaned-up and extracted using solid-phase extraction (SPE) procedures with hydrophilic-lipophilic balance (HLB) C-18 cartridges. Seasonal variation and distribution of PFCs in surface water and sediment was also investigated. Levels of PFCs were monitored in four seasons (summer, autumn, winter and spring) to establish their trend in the environment. The removal of PFOA and PFOS from aqueous solutions using agro-waste biomass of Vitis vinifera (grape) leaf litter was also studied. Activated carbons were produced from the biomass and chemical activation achieved with phosphoric acid (H3PO4) and potassium hydroxide (KOH) for the modification of the carbons’ (AC-H3PO4 and AC-KOH respectively). Activated carbons were characterized using Fourier Transform infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Brunauer- Emmett-Teller (BET) in order to understand the removal mechanisms of the contaminants by activated carbons. The effects of solution concentration, pH, adsorbent dosage, contact time, and the temperature were optimized for evaluation of the removal efficiency of the activated carbons. Adsorption isotherm models were used to analyze the equilibrium data obtained and kinetic models were applied to study sorption mechanisms. A fixed bed column study was conducted using: AC-H3PO4 adsorbent. Experimental parameters such as initial concentration of the solution, column bed height, flow rate and initial concentrations of the influent were optimized to establish the best adsorption efficiency parameters of the column system. Breakthrough curve and exhaustion time were predicted using Adam-Bohart, Yoon-Nelson, and Thomas models for the fixed bed column under varying experimental conditions.
29

Constraining global biogenic emissions and exploring source contributions to tropospheric ozone: modeling applications.

Shim, Changsub 26 June 2006 (has links)
Biogenic isoprene plays an important role in tropospheric chemistry. We use HCHO column measurements by the Global Ozone Monitoring Experiment (GOME) to constrain isoprene emissions. Using the global Goddrad Earth Observing SystemChemistry (GEOS-Chem) as the forward model, a Bayesian inversion of GOME HCHO observations from September 1996 to August 1997 is conducted. Column contributions to HCHO from 12 sources including 10 terrestrial ecosystem groups, biomass burning, and industry are considered and inverted for 8 geographical regions globally. The a posteriori solution reduces the model biases for all regions, and estimates the annual global isoprene emissions of 566 Tg C yr-1, ~50% larger than the a priori estimate. Compared to the Global Emissions Inventory Activity (GEIA) inventory (~500 Tg C yr-1), the a posteriori isoprene emissions are generally higher at mid latitudes and lower in the tropics. This increase of global isoprene emissions significantly affects tropospheric chemistry, decreasing the global mean OH concentration by 10.8% to 0.95106 molecules/cm3. The atmospheric lifetime of CH3CCl3 increases from 5.2 to 5.7 years. Positive matrix factorization (PMF), an advanced method for source apportionment, is applied to TRAnsport of Chemical Evolution over the Pacific (TRACE-P) measurements and it is found that cyanogenesis in plants over Asia is likely an important emission process for CH3COCH3 and HCN. This approach also is applied to estimate source contributions to the tropospheric ozone (O3) with Tropospheric Ozone Production about the Spring Equinox (TOPSE) and TRACE-P measurements. The corresponding GEOS-Chem simulations are applied to the same factor-projected space in order to evaluate the model simulations. Intercontinental transport of pollutants is most responsible for increasing trend of springtime O3, while stratospheric influence is the largest contributions to troposperic O3 variability at northern middle and high latitudes. On the other hand, the overall tropospheric contributions to O3 variability are more important at northern low latitudes by long-range transport, biomass burning, and industry/urban emissions. In general, the simulated O3 variabilities are comparable with those of observations. However, the model underestimates the trends of and the contributions to O3 variability by long-range transport of O3 and its precursors at northern middle and high latitudes.
30

Refueling and evaporative emissions of volatile organic compounds from gasoline powered motor vehicles

Quigley, Christopher John, 1962- 29 August 2008 (has links)
The United States Environmental Protection Agency has estimated that over 111 million people reside in areas that exceed the National Ambient Air Quality Standards for ozone. One major source of the chemical precursors (nitrogen dioxides and volatile organic compounds (VOCs)) for ozone are motor vehicles. The overall goal of this research is to improve the knowledge base related to VOC refueling and evaporative emissions from motor vehicles. Refueling, running loss, hot soak, and diurnal loss total and speciated VOC emissions were investigated. A total of 12 uncontrolled refueling events were completed and involved the determination of volumetric flow rates of gasoline vapor during refueling, as well as total and speciated VOC concentrations. Total VOC emissions were compared with two commonly used algorithms. Speciated VOC vapor profiles were compared with two published gasoline vapor profiles and theoretical predictions based on knowledge of liquid composition and environmental conditions. An evaluation of refueling emissions impacts on ozone formation potentials using MIR was completed and results were compared against speciated emissions and MOBILE-based total VOC emissions estimates coupled with a default speciation profile. Refueling VOC emissions and resultant ozone formation potential may be underestimated in existing emission inventories, particularly during the summer ozone season, A model was developed to predict the speciation of VOCs associated with evaporative emissions from motor vehicles. Model-predicted speciation profiles were evaluated using SHED studies. Running loss, hot soak and diurnal emissions were included in each test. Total VOC emissions measured during each test were compared against MOBILE6 predicted emissions. An evaluation of evaporative emissions impacts on ozone formation potentials using MIR was completed, comparing measured and predicted emissions. The measured:predicted speciation results ranged between 0.93 and 1.11 and had an average value of 1.02. For the conditions tested, MOBILE6 underestimated evaporative emissions in 20 of 24 comparisons. MOBILE6-based ozone formation potentials may be underestimated.

Page generated in 0.1252 seconds