• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 35
  • 35
  • 35
  • 35
  • 14
  • 13
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

An investigation into total volatile organic compound exposure levels in homes and classrooms of asthmatic children in selected sites in Durban.

Maharaj, Santosh Kumar. January 2008 (has links)
Indoor air quality has become an important health concern due to the number of indoor pollutants and the realization that even minimal exposures to volatile organic compounds may produce direct or indirect adverse health outcomes. Young people are most vulnerable to these poisonous chemicals as they spend much of their times indoors at homes, schools, nurseries and in day care centers. Exposure to volatile organic compounds indoors has been related to asthma and other respiratory symptoms. The adverse effects of air pollution on respiratory health in South Durban have been described in a number of studies. In 2000, a study in the South Durban Basin at Settlers Primary School demonstrated both a high prevalence of respiratory diseases amongst schoolchildren as well as an association between ambient air pollutants and other adverse health outcomes. The South Durban Health Study subsequently undertook a health risk assessment and an epidemiological study investigating this association further on behalf of the eThekwini Municipality. The study highlighted that relatively moderate ambient concentration of N02, NO, PMIO and S02 were strongly and significantly associated with a reduction in lung function among children with persistent asthma. Moreover, attending primary school in South Durban was significantly associated with increased risk from persistent asthma when compared to schools in North Durban. METHODS The descriptive study measured the total volatile organic compound levels within selected homes and schools of asthmatic children in South and North Durban. Recommendations for reducing or mitigating indoor total volatile organic compound exposures were made. The study involved a secondary analysis of data obtained from the South Durban Health Study. The monitoring for total volatile organic compounds within homes and classrooms was undertaken using passive samplers during a 72-hour period and analyzed using a gaschromatography/ mass spectrometry method. Temperature and humidity was assessed using temperature and humidity sensors. Statistical analysis was performed using SPSS version 13. The dataset comprised 140 total volatile organic compound samples from homes and 14 from classrooms. Total volatile organic compounds were measured in microgram per cubic meter (g/m3), temperature in degrees Celsius and relative humidity in percentage of moisture. RESULTS Total volatile organic compounds with levels in households ranging from 17g/m3 to 1440g/m3 and in classrooms ranging from 48g/m3 to 5292g/m3 were measured. The mean levels detected were significantly different in homes and classrooms / Thesis (MMed.)-University of KwaZulu-Natal, Durban, 2008.
32

Evaluation of some pharmaceutical and personal care products and pesticide residues in selected wastewater treatment plants and receiving watersheds in Eastern Cape, South Africa

Ademoyegun, Olufemi Temitope January 2017 (has links)
Emerging organic contaminants (EOCs) have been the focus of global environmental research for over three decades. EOCs have caused widespread concern due to their extensive use. As EOCs were designed to correct, enhance or protect a specific physiological, their target effects in humans and/or farm stocks are relatively well known and documented. However, there is limited knowledge about their unintended effects in the environment. To address the occurrence, distribution and fate of EOCs in the environment, efficient and reliable analytical methods are needed. The relatively low concentration, high polarity, and thermal lability of some EOCs, together with their interaction with complex environmental matrices, make their analysis challenging. Sample preparation followed by GC or HPLC separation and mass spectrometry (MS) detection has become the standard approach for evaluating EOCs in environmental samples. Physicochemical properties of EOCs range from highly water-soluble (hydrophylic) to highly water-insoluble (hydrophobic). Two groups of these EOCs were considered for study in this work. Pharmaceutical and personal care products (PPCPs) were comprehensively studied in five wastewater treatment plants and their receiving watersheds in Amathole districts in Eastern C ape, South Africa. PPCPs have been widely reported in wastewater influents, effluents, receiving rivers and biosolids, but reports of their occurrence in all these matrixes have been limited by the difficulty of analysis. Therefore, a comprehensive validation of methods was carried out on the influents, effluents, sludge and soil from the irrigated golf course where the effluent of one of the study sites was being used for over three decades now for irrigation. In all, thirteen PPCPs from five therapeutic groups were selected for study in this work because of their administering rate and availability of analytical instrument. Good limit of detection (LOD) and limit of quantification (LOQ) were achieved for the method used. The LOD for the aqueous Three different technologies were employed for the treatment of wastewater in the five selected wastewater treatment plants (WWTPs) and study was carried out to evaluate their ability to eliminate the selected compounds from the influents to the effluents using statistical analysis (ANOVA) at p<0.05 on the percentage removal rate across the three plants. The results had shown eight of the compounds having no significant difference among the treatment operations, whereas the remaining five compounds varied significantly among the treatment technologies under investigation. Principal component analysis was performed on the concentration of PPCPs, their removal rate and also on the physicochemical and treatment operation parameters. Hydraulic retention time (HRT) had correlation coefficient, r = 0.90 with the concentration of PPCPs and removal rates. Furthermore, occurrences, seasonal variation, mean concentration distribution pattern of the compounds, and temporal evaluation of the mean concentration of the pharmaceutical compounds in the five WWTPs during one year of sampling were considered. The results revealed that five products which were diclofenac, ibuprofen, paracetamol, triclosan and diethyl toluamide (DDET) were predominant among the PPCPs in all the WWTPs. The removal efficiency was highest in caffeine with 96 percent, and the lowest was obtained with carbamazepine (4 percent). Risk quotient of the concentration of PPCPs in the effluents and receiving waters was determined to assess their chronic toxicity at three trophic levels: fish, algae and matrixes studied ranged from 0.01 μg/L to 0.25 μg/L, and the LOQ from 0.02 μg/L to 0.78 μg/L. In the solid matrixes, LOD varied from 0.01 ng/g to 0.65 ng/g, and the LOQ between 0.08 ng/g and 5.17 ng/g. Better recovery efficiency was obtained with this mixture of solvents, acetone: dichloromethane (1:1), for the recovery of the five therapeutic groups in the solid matrixes using ultrasonication- assisted techniques. The results show percentage recovery values ranging from 68.8 percent to 107.5 percent diaphian. According to the environmental risk assessment results, ibuprofen and triclosan were found to be the most critical compounds due to their high risk quotient values. These findings will, therefore, help in the future evaluation of the efficiency of different treatment technologies in the removal of various PPCPs from the wastewater and their sustainable management in the aquatic resources in Eastern Cape, South Africa. For the lipophilic organochlorine pesticides (OCPs), the limits of detection (LODs) of the tested congeners varied from 0.04 ng/g (α-BHC) to 0.49 ng/g (endosulfan sulfate) and the limits of quantification ranging from 0.22 ng/g (aldrin) to 2.17 ng/g (δ-BHC).
33

A survey of inorganic chemical pollution in the Bottelary River, Cape Town.

Feng, Xiao Yi January 2005 (has links)
Chemical pollution of freshwater is a worldwide environmental problem / eutrophication, heavy metals and salinity are amongst the most widely used indicators of pollution. The aim of this study was to assess the status of nutrients, heavy metals and salinity, and the seasonal variation int he Bottelary River.
34

A survey of inorganic chemical pollution in the Bottelary River, Cape Town.

Feng, Xiao Yi January 2005 (has links)
Chemical pollution of freshwater is a worldwide environmental problem / eutrophication, heavy metals and salinity are amongst the most widely used indicators of pollution. The aim of this study was to assess the status of nutrients, heavy metals and salinity, and the seasonal variation int he Bottelary River.
35

Determination of the influence of volatiles emitted by the semiochemical lure, T.V. Pherolure® on the volatile profile of a commercial tomato field

Van Tonder, Aletta Johanna 01 1900 (has links)
The use of pheromone-based or semiochemical lures and devices for the detection of insect pest population and monitoring in agriculture is a common practice. In many countries the use of these devices is exempt from registration requirements based on regulatory thresholds set by the relevant authorities, however, not in South Africa. The question arises whether the pheromones or semiochemicals dispensed through such devices, influence the naturally occurring compounds observed and whether a concern of toxicity and ecotoxicity is justified. A tomato field was selected in a commercial growing area of South Africa and a novel five-component lure, T.V. PheroLure®, was identified from a local manufacturer, Insect Science (Pty) Ltd. The T.V. PheroLure® consists of a Volatile Organic Compound (VOC) blend which is placed in a polyethylene bulb. Tomato VOCs were collected before, during and after the application of the T.V. PheroLure® which was used in combination with a yellow bucket funnel trap. The VOCs were collected at different heights (0 cm, 30 cm and 60 cm) of the tomato plants, from planting until harvest (22 weeks) and surrounding tomato fields without the T.V. PheroLure®. The results obtained indicated that: (i) the T.V. PheroLure® had no significant influence on the natural VOCs observed in the tomato field and (ii) that the height of sampling had no influence on VOCs observed. This study also indicated that apart from a slight increased contribution of limonene, there was no significant influence observed from the T.V. PheroLure® compounds on the natural background VOCs found in the tomato field. Therefore, it could be argued that the natural phenology of the plant has a greater influence on the VOCs observed than T.V. PheroLure® and that the concern of toxicity and ecotoxicity is unjustified when using these devices for monitoring purposes only. / Environmental Sciences / M. Sc. (Environmental Science)

Page generated in 0.1394 seconds