• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Organic Installs in a Free-to-Play Game / Modellering av organiska nedladdningar i ett Free-to-Play Spel.

Prudhomme, Maxime January 2022 (has links)
The Free-To-Play industry relies on getting a huge inflow of new players that might result in future gross bookings. Consequently, getting organic new players is crucial to ensure its health, especially as they have no direct associated acquisition cost. In addition, forecasting helps business planning as future gross bookings result from those news installs. This thesis investigates methods such as Linear Regression, Ridge, Lasso regularization, time-series analysis, and Prophet to forecast the inflow of organic installs and try to understand the factors impacting it. Using the data from 3 games for two platforms and 15 countries, it investigates the differences in behavior observed over the segments. This thesis first focuses on a specific segment by modeling the inflow of organic installs for the game number 17 on iOS in the United States of America. On this segment, the best model is the Lasso model using, among others, a Prophet model as a variable. However, the generalization to all segments is difficult. On average, exponential decay over time is the best way to forecast the future inflow of organic as it presents the more consistent performances over all segments. / Free-To-Play-branschen är beroende av att få ett stort inflöde av nya spelare, som sedan eventuellt kan generera framtida intäkter. För att kunna säkerställa ett spels fortsatta hälsa är det därför avgörande att få nya spelare organiskt. Detta är särskilt viktigt då det inte innebär någon anskaffningskostnad. Då framtida intäkter är beroende av nya nedladdningar är prognostisering till stor nytta i företagsplanering. Denna uppsats använder metoder som linjär regression, Ridge, Lasso-regularization, tidsserieanalys och Prophet för att förutspå inflödet av organiska nedladdningar och förstå vilka faktorer som påverkar detta inflöde.Genom användningen av data från tre spel från två plattformar och 15 länder undersöks skillnader i beteende för olika segment. Denna uppsats fokuserar på ett specifikt segment genom att modellera inflödet av organiska nedladdningar för spel nummer 17 på iOS i USA. För detta segment är Lasso-modellen bäst, som bland annat använder Prophet-modellen som variabel. Det är dock svårt att överföra slutsatserna på andra segment. Istället är det bättre att anta en exponentiell nedgång över tid när man förutspår framtida inflöden av organiska nedladdningar, då det ger mer konsekventa resultat för alla segment.

Page generated in 0.0403 seconds