• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 103
  • 103
  • 103
  • 25
  • 25
  • 21
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Organic carbon dynamics of the Neches River and its floodplain.

Stamatis, Allison Davis 12 1900 (has links)
A large river system typically derives the majority of its biomass from production within the floodplain. The Neches River in the Big Thicket National Preserve is a large blackwater river that has an extensive forested floodplain. Organic carbon was analyzed within the floodplain waters and the river (upstream and downstream of the floodplain) to determine the amount of organic carbon from the floodplain that is contributing to the nutrient dynamics in the river. Dissolved organic carbon was significantly higher at downstream river locations during high discharge. Higher organic carbon levels in the floodplain contributed to increases in organic carbon within the Neches River downstream of the floodplain when Neches River discharges exceeded 10,000 cfs. Hurricane Rita passed through the Big Thicket National Preserve in September 2005. Dissolved organic carbon concentrations recorded after Hurricane Rita in the Neches River downstream of the floodplain were significantly higher than upstream of the floodplain. Dissolved organic carbon was twice as high after the hurricane than levels prior to the hurricane, with floodplain concentrations exceeding 50 ppm C. The increase in organic carbon was likely due to nutrients leached from leaves, which were swept from the floodplain trees prior to normal abscission in the fall. A continuum of leaf breakdown rates was observed in three common floodplain species of trees: Sapium sebiferum, Acer rubrum, and Quercus laurifolia. Leaves collected from blowdown as a result of Hurricane Rita did not break down significantly faster than leaves collected prior to abscission in the fall. Processing coefficients for leaf breakdown in a continuously wet area of the floodplain were significantly higher than processing coefficients for leaf breakdown on the floodplain floor. The forested floodplain of the Neches River is the main contributor of organic carbon. When flow is greater than 10,000 csf, the floodplain transports organic carbon directly to the river, providing a source of nutrition for riverine organisms and contributing to the overall health of the ecosystem.
102

Plasmon catalyst dispersed on carbonised pinecone for enhanced degradation of organic contaminants

Olalekan, Sanni Saheed 11 1900 (has links)
Ph. D. (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / Aromatic organic contaminants are difficult to biodegrade, and thus effective green technologies are required to remove these pollutants from the ecosystem. Tetracycline antibiotic, an organic water pollutant, can be degraded by heterogeneous photocatalysis using an appropriate catalyst, with capability in converting the visible light energy into active species. The thesis focused on silver nanoparticles anchored on silver bromide (Ag/AgBr) as a plasmonic catalyst dispersed on activated carbon (ACK), were used as a photocatalyst (AABR-ACK) in tetracycline removal. The aim is to develop a catalyst that is active in low intensity visible light, whilst the addition of activated carbon will increase the light absorption and separate the charge pairs, after the photocatalyst has been excited by the visible light. The activated carbons were derived from pinecone pyrolyzed in a microwave. The pinecone mass to potassium hydroxide impregnation ratio and microwave pyrolysis time influenced the activated carbon properties. An impregnation ratio of 2.24 and microwave pyrolysis time of 16 minutes at constant microwave power of 400 W yielded the activated carbon with the best-developed porous structure and electrochemical properties. This activated carbon was used during the optimisation of the Ag/AgBr activated carbon (AABR-ACK) catalysts preparation using a thermal polyol precipitation method and response surface methodology. The most active catalyst was the AABR-ACK 11 obtained by a preparation temperature of 140 ºC, time (17.50 minutes), mass of surfactant and activated carbon (0.26 g and 0.03 g) respectively. This catalyst had an ordered nanospheres morphology, reduced electron-hole recombination rate, better electrochemical properties and exhibited enhanced activity on the tetracycline antibiotic removal in comparison to other Ag/AgBr activated carbon catalysts. A percentage degradation of 92% was obtained in 180 minutes were obtained with the AABR-ACK 11 catalyst. The photocatalyst prepared using the best activated carbon derived from pinecone developed in this study was compared to photocatalysts prepared using commercial activated carbon and biochar. The Ag/AgBr activated carbon catalysts using pinecone-derived activated carbon degraded the tetracycline to 92%, which is significantly higher than the percentage degradations (80% and 74%) for the catalyst prepared using commercial activated carbon and biochar catalysts respectively. The higher activity of the Ag/AgBr activated carbon catalysts using pinecone-derived activated carbon was due to the conductive attributes of the catalyst support for accelerated transfer of photo-induced electrons. The Ag/AgBr activated carbon catalysts using pinecone- derived activated carbon also exhibited better performance on tetracycline removal when compared to photocatalysts reported in literature. Two catalyst preparation methods, thermal polyol and deposition precipitation, were compared. The thermal polyol method yielded a more active catalyst for the degradation of the tetracycline in comparison to the deposition precipitation method. The degradation reaction conditions such as pH, light intensity and degradation temperature influenced the rate of the reaction. The highest rate of degradation was obtained at a pH of seven, white light and 40 ºC temperature. The intermediate products formed because of hydroxylation, deamination, demethylation and dehydration during the photocatalytic degradation of tetracycline antibiotics were identified using liquid chromatography mass spectrometer. Quenching experiments with hydroxyl, hole, and superoxide anion species showed that the most important radical responsible for the tetracycline degradation was the superoxide anion radical.
103

Nitrogen, Phosphorus and Carbon Dynamics during Storms in a Glaciated Third-Order Watershed in the US Midwest

Johnstone, Joseph A. 22 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The characterization of the nutrients nitrogen, phosphorus and carbon (NPC) export to streams during storms is an integral part of understanding processes affecting water quality. Despite the fact that excessive levels of these nutrients in the Mississippi River basin adversely affects water quality in the Gulf of Mexico, little research has been conducted on NPC dynamics during storms on larger (>20 km2) agriculturally dominated Midwestern watersheds. This project examined the storm export of nitrate, ammonium, total phosphorus, and dissolved organic carbon (DOC) in the upper Eagle Creek Watershed (UECW) (274 km2) in Central Indiana, USA. Water samples were collected during five winter and spring storms in 2007 and 2008 on the rising and falling limb of the hydrograph, in order to characterize NPC dynamics during storm events. Stream discharge and precipitation was monitored continuously, and major cations were used to examine changes in source water over the duration of the storm and assist in the determination of potential flowpaths. DOC, total P, and TKN (Total Kjeldahl Nitrogen) tended to peak with discharge, while nitrate usually exhibited a slight lag and peaked on the receding limb. Total phosphorus, NH3-, TKN, and DOC appear to be delivered to the stream primarily by overland flow. NO3--N appear to be delivered by a combination of tile drain and macropore flow. Overall UECW displayed smoother nutrient export patterns than smaller previously studied watersheds in the area suggesting that scale may influence nutrient export dynamics. Further research is underway on a 3000 km2 watershed in the area to further examine the role scale may play in nutrient export patterns.

Page generated in 0.0673 seconds